hkivancoral's picture
End of training
3f208c6
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5121951219512195

hushem_40x_deit_base_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1678
  • Accuracy: 0.5122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3902 1.0 220 1.3668 0.2683
1.375 2.0 440 1.3610 0.2927
1.3643 3.0 660 1.3560 0.2683
1.3352 4.0 880 1.3513 0.2683
1.343 5.0 1100 1.3466 0.2683
1.2985 6.0 1320 1.3416 0.2683
1.3152 7.0 1540 1.3365 0.2927
1.2618 8.0 1760 1.3311 0.3171
1.2728 9.0 1980 1.3254 0.3415
1.2604 10.0 2200 1.3195 0.3415
1.2446 11.0 2420 1.3136 0.3415
1.2322 12.0 2640 1.3076 0.3902
1.2519 13.0 2860 1.3017 0.4146
1.2115 14.0 3080 1.2958 0.4146
1.2112 15.0 3300 1.2899 0.4390
1.1892 16.0 3520 1.2841 0.4390
1.1942 17.0 3740 1.2784 0.4390
1.2008 18.0 3960 1.2727 0.4390
1.1853 19.0 4180 1.2671 0.4390
1.1573 20.0 4400 1.2615 0.4634
1.1577 21.0 4620 1.2560 0.4634
1.1317 22.0 4840 1.2506 0.4634
1.1597 23.0 5060 1.2453 0.4878
1.1283 24.0 5280 1.2401 0.4878
1.1168 25.0 5500 1.2349 0.4634
1.142 26.0 5720 1.2300 0.4634
1.1324 27.0 5940 1.2251 0.4634
1.1074 28.0 6160 1.2203 0.4634
1.107 29.0 6380 1.2157 0.4634
1.098 30.0 6600 1.2113 0.4634
1.1034 31.0 6820 1.2071 0.4634
1.0941 32.0 7040 1.2031 0.4634
1.0839 33.0 7260 1.1993 0.4634
1.0528 34.0 7480 1.1956 0.4634
1.0292 35.0 7700 1.1922 0.4634
1.0585 36.0 7920 1.1890 0.4634
1.0434 37.0 8140 1.1859 0.4634
1.0597 38.0 8360 1.1831 0.4634
1.0626 39.0 8580 1.1805 0.4634
1.0375 40.0 8800 1.1782 0.4634
1.0422 41.0 9020 1.1761 0.4634
1.0304 42.0 9240 1.1742 0.4634
1.0373 43.0 9460 1.1726 0.4878
1.0134 44.0 9680 1.1712 0.4878
1.0323 45.0 9900 1.1701 0.4878
1.0327 46.0 10120 1.1692 0.5122
1.0599 47.0 10340 1.1685 0.5122
1.0079 48.0 10560 1.1681 0.5122
1.0145 49.0 10780 1.1679 0.5122
1.0358 50.0 11000 1.1678 0.5122

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2