hkivancoral's picture
End of training
6c5da87
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_sgd_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.37777777777777777

hushem_40x_deit_base_sgd_0001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2920
  • Accuracy: 0.3778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3635 1.0 215 1.4586 0.2889
1.3564 2.0 430 1.4485 0.2889
1.3735 3.0 645 1.4395 0.2889
1.3415 4.0 860 1.4312 0.2889
1.3033 5.0 1075 1.4236 0.2889
1.3111 6.0 1290 1.4165 0.2667
1.2796 7.0 1505 1.4098 0.2667
1.265 8.0 1720 1.4035 0.2667
1.2454 9.0 1935 1.3975 0.2667
1.2437 10.0 2150 1.3919 0.2667
1.2689 11.0 2365 1.3867 0.2667
1.212 12.0 2580 1.3818 0.2667
1.2193 13.0 2795 1.3771 0.2667
1.2167 14.0 3010 1.3726 0.2667
1.205 15.0 3225 1.3683 0.2667
1.2084 16.0 3440 1.3641 0.2889
1.1861 17.0 3655 1.3601 0.3333
1.1898 18.0 3870 1.3563 0.3556
1.1745 19.0 4085 1.3526 0.3556
1.1602 20.0 4300 1.3489 0.3556
1.1523 21.0 4515 1.3454 0.3556
1.1329 22.0 4730 1.3420 0.3556
1.1475 23.0 4945 1.3387 0.3556
1.1333 24.0 5160 1.3354 0.3556
1.1285 25.0 5375 1.3322 0.3333
1.0938 26.0 5590 1.3292 0.3333
1.0832 27.0 5805 1.3262 0.3333
1.0889 28.0 6020 1.3234 0.3333
1.0886 29.0 6235 1.3206 0.3333
1.0684 30.0 6450 1.3180 0.3333
1.0707 31.0 6665 1.3154 0.3333
1.068 32.0 6880 1.3130 0.3333
1.0647 33.0 7095 1.3107 0.3556
1.0516 34.0 7310 1.3085 0.3556
1.0515 35.0 7525 1.3064 0.3556
1.0477 36.0 7740 1.3045 0.3556
1.0685 37.0 7955 1.3027 0.3556
1.0459 38.0 8170 1.3010 0.3556
1.0276 39.0 8385 1.2995 0.3556
1.016 40.0 8600 1.2981 0.3556
1.044 41.0 8815 1.2969 0.3556
1.0849 42.0 9030 1.2957 0.3556
1.0504 43.0 9245 1.2948 0.3778
1.0115 44.0 9460 1.2940 0.3778
1.0336 45.0 9675 1.2933 0.3778
1.0415 46.0 9890 1.2928 0.3778
1.013 47.0 10105 1.2924 0.3778
1.0207 48.0 10320 1.2921 0.3778
1.054 49.0 10535 1.2920 0.3778
1.0317 50.0 10750 1.2920 0.3778

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2