File size: 4,865 Bytes
c4f9ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_base_rms_001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5777777777777777
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_40x_deit_base_rms_001_fold2

This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 8.5594
- Accuracy: 0.5778

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.1732        | 1.0   | 215   | 1.0108          | 0.4667   |
| 0.7763        | 2.0   | 430   | 1.2138          | 0.5333   |
| 0.7021        | 3.0   | 645   | 1.2446          | 0.4      |
| 0.6002        | 4.0   | 860   | 1.7707          | 0.4444   |
| 0.4988        | 5.0   | 1075  | 2.1116          | 0.4667   |
| 0.4269        | 6.0   | 1290  | 2.3849          | 0.5556   |
| 0.3366        | 7.0   | 1505  | 2.4322          | 0.5556   |
| 0.2961        | 8.0   | 1720  | 3.2646          | 0.5556   |
| 0.2377        | 9.0   | 1935  | 3.1438          | 0.5333   |
| 0.2435        | 10.0  | 2150  | 3.6031          | 0.5778   |
| 0.2593        | 11.0  | 2365  | 3.5951          | 0.4889   |
| 0.1482        | 12.0  | 2580  | 3.8372          | 0.5111   |
| 0.1871        | 13.0  | 2795  | 3.7490          | 0.6222   |
| 0.1246        | 14.0  | 3010  | 3.7977          | 0.5333   |
| 0.166         | 15.0  | 3225  | 3.7321          | 0.5778   |
| 0.1672        | 16.0  | 3440  | 4.6413          | 0.4889   |
| 0.1752        | 17.0  | 3655  | 4.9330          | 0.5556   |
| 0.1214        | 18.0  | 3870  | 4.3615          | 0.5556   |
| 0.0488        | 19.0  | 4085  | 4.4231          | 0.5111   |
| 0.1336        | 20.0  | 4300  | 4.4451          | 0.5778   |
| 0.1002        | 21.0  | 4515  | 3.7455          | 0.5778   |
| 0.0734        | 22.0  | 4730  | 4.4970          | 0.5556   |
| 0.0322        | 23.0  | 4945  | 4.8990          | 0.5333   |
| 0.214         | 24.0  | 5160  | 5.1865          | 0.5778   |
| 0.1242        | 25.0  | 5375  | 5.0088          | 0.5333   |
| 0.0033        | 26.0  | 5590  | 4.9606          | 0.5556   |
| 0.0333        | 27.0  | 5805  | 4.4063          | 0.5778   |
| 0.0592        | 28.0  | 6020  | 4.1719          | 0.5556   |
| 0.0444        | 29.0  | 6235  | 6.2342          | 0.5111   |
| 0.0039        | 30.0  | 6450  | 5.9834          | 0.5333   |
| 0.003         | 31.0  | 6665  | 6.2329          | 0.5333   |
| 0.0008        | 32.0  | 6880  | 6.2499          | 0.6      |
| 0.1078        | 33.0  | 7095  | 5.2542          | 0.6222   |
| 0.0258        | 34.0  | 7310  | 6.7980          | 0.4889   |
| 0.0052        | 35.0  | 7525  | 6.6849          | 0.5333   |
| 0.0003        | 36.0  | 7740  | 6.1342          | 0.5556   |
| 0.0005        | 37.0  | 7955  | 5.4920          | 0.5778   |
| 0.0004        | 38.0  | 8170  | 5.3684          | 0.5778   |
| 0.0148        | 39.0  | 8385  | 5.3551          | 0.5556   |
| 0.0054        | 40.0  | 8600  | 7.4300          | 0.5111   |
| 0.0           | 41.0  | 8815  | 6.8539          | 0.5556   |
| 0.0           | 42.0  | 9030  | 6.8688          | 0.5556   |
| 0.0           | 43.0  | 9245  | 7.1702          | 0.5778   |
| 0.0           | 44.0  | 9460  | 7.4631          | 0.5778   |
| 0.0           | 45.0  | 9675  | 7.7338          | 0.5778   |
| 0.0           | 46.0  | 9890  | 7.9825          | 0.5778   |
| 0.0           | 47.0  | 10105 | 8.2172          | 0.5778   |
| 0.0           | 48.0  | 10320 | 8.4047          | 0.5778   |
| 0.0           | 49.0  | 10535 | 8.5267          | 0.5778   |
| 0.0           | 50.0  | 10750 | 8.5594          | 0.5778   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2