--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_beit_large_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 --- # hushem_40x_beit_large_adamax_00001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6462 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0076 | 1.0 | 215 | 0.3905 | 0.8222 | | 0.0024 | 2.0 | 430 | 0.2614 | 0.8889 | | 0.0002 | 3.0 | 645 | 0.3363 | 0.8889 | | 0.0012 | 4.0 | 860 | 0.2896 | 0.8889 | | 0.0012 | 5.0 | 1075 | 0.4297 | 0.8667 | | 0.0001 | 6.0 | 1290 | 0.4692 | 0.8667 | | 0.0001 | 7.0 | 1505 | 0.4005 | 0.8444 | | 0.0001 | 8.0 | 1720 | 0.5343 | 0.8444 | | 0.0004 | 9.0 | 1935 | 0.6104 | 0.8667 | | 0.0 | 10.0 | 2150 | 0.6182 | 0.8667 | | 0.0 | 11.0 | 2365 | 0.5923 | 0.8 | | 0.0 | 12.0 | 2580 | 0.5080 | 0.8667 | | 0.0 | 13.0 | 2795 | 0.3680 | 0.8444 | | 0.0 | 14.0 | 3010 | 0.5787 | 0.8667 | | 0.0 | 15.0 | 3225 | 0.5592 | 0.8667 | | 0.0 | 16.0 | 3440 | 0.6399 | 0.8667 | | 0.0 | 17.0 | 3655 | 0.7482 | 0.8444 | | 0.0 | 18.0 | 3870 | 0.6724 | 0.8444 | | 0.0 | 19.0 | 4085 | 0.7872 | 0.8222 | | 0.0 | 20.0 | 4300 | 0.5260 | 0.8667 | | 0.0 | 21.0 | 4515 | 0.5473 | 0.8667 | | 0.0 | 22.0 | 4730 | 0.7409 | 0.8222 | | 0.0 | 23.0 | 4945 | 0.4466 | 0.8667 | | 0.0 | 24.0 | 5160 | 0.4166 | 0.8889 | | 0.0 | 25.0 | 5375 | 0.5144 | 0.8667 | | 0.0 | 26.0 | 5590 | 0.4960 | 0.8889 | | 0.0 | 27.0 | 5805 | 0.4646 | 0.8889 | | 0.0 | 28.0 | 6020 | 0.5759 | 0.8444 | | 0.0 | 29.0 | 6235 | 0.7279 | 0.8444 | | 0.0 | 30.0 | 6450 | 0.5042 | 0.8889 | | 0.0 | 31.0 | 6665 | 0.6050 | 0.8667 | | 0.0 | 32.0 | 6880 | 0.6602 | 0.8222 | | 0.0 | 33.0 | 7095 | 0.6359 | 0.8222 | | 0.0 | 34.0 | 7310 | 0.5725 | 0.8667 | | 0.0 | 35.0 | 7525 | 0.6179 | 0.8444 | | 0.0 | 36.0 | 7740 | 0.6579 | 0.8889 | | 0.0 | 37.0 | 7955 | 0.7260 | 0.8222 | | 0.0 | 38.0 | 8170 | 0.6510 | 0.8667 | | 0.0 | 39.0 | 8385 | 0.6445 | 0.8667 | | 0.0 | 40.0 | 8600 | 0.6364 | 0.8444 | | 0.0001 | 41.0 | 8815 | 0.6206 | 0.8444 | | 0.0 | 42.0 | 9030 | 0.6766 | 0.8667 | | 0.0 | 43.0 | 9245 | 0.7659 | 0.8667 | | 0.0003 | 44.0 | 9460 | 0.7574 | 0.8667 | | 0.0 | 45.0 | 9675 | 0.7168 | 0.8667 | | 0.0 | 46.0 | 9890 | 0.6864 | 0.8667 | | 0.0 | 47.0 | 10105 | 0.6531 | 0.8667 | | 0.0 | 48.0 | 10320 | 0.6563 | 0.8667 | | 0.0 | 49.0 | 10535 | 0.6461 | 0.8667 | | 0.0001 | 50.0 | 10750 | 0.6462 | 0.8667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2