File size: 2,330 Bytes
876686b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---

library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_8_task_6_run_id_1_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-6-difficulty-8
  results:
  - task:
      type: sub-task
      name: drop_water
      task-id: 6
      difficulty-id: 8
    dataset:
      name: hivex-aerial-wildfire-suppression
      type: hivex-aerial-wildfire-suppression
    metrics:
    - type: crash_count
      value: 0.010958191571990027 +/- 0.004573914836666436
      name: Crash Count
      verified: true
    - type: extinguishing_trees
      value: 0.18876909412210807 +/- 0.14536552612874615
      name: Extinguishing Trees
      verified: true
    - type: extinguishing_trees_reward
      value: 0.9438454601913691 +/- 0.7268276219188166
      name: Extinguishing Trees Reward
      verified: true
    - type: preparing_trees
      value: 295.6805847167969 +/- 8.689367684892192
      name: Preparing Trees
      verified: true
    - type: preparing_trees_reward
      value: 295.6805847167969 +/- 8.689367684892192
      name: Preparing Trees Reward
      verified: true
    - type: water_drop
      value: 0.9887655645608902 +/- 0.004140661152640941
      name: Water Drop
      verified: true
    - type: water_pickup
      value: 0.0006430462468415499 +/- 0.0013853557027389734
      name: Water Pickup
      verified: true
    - type: cumulative_reward
      value: 295.6266799926758 +/- 9.439199947060839
      name: Cumulative Reward
      verified: true
---


This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>6</code> with difficulty <code>8</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>

Environment: **Aerial Wildfire Suppression**<br>
Task: <code>6</code><br>
Difficulty: <code>8</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>3000</code><br>
Training <code>max_steps</code>: <code>1800000</code><br>

Testing <code>max_steps</code>: <code>180000</code><br><br>

Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)