--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - deBERTa - sequence-classification - generated_from_trainer datasets: - banking77 metrics: - accuracy model-index: - name: banking77-deBERTa-v3-base results: - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: train args: default metrics: - type: accuracy value: 0.9195402298850575 name: Accuracy --- # banking77-deBERTa-v3-base This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3281 - Accuracy: 0.9195 - F1 Macro: 0.9170 - Precision Macro: 0.9222 - Recall Macro: 0.9159 - F1 Weighted: 0.9194 - Precision Weighted: 0.9229 - Recall Weighted: 0.9195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | F1 Weighted | Precision Weighted | Recall Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:-----------:|:------------------:|:---------------:| | 3.4666 | 1.0 | 501 | 3.1762 | 0.3548 | 0.2479 | 0.3016 | 0.3195 | 0.2774 | 0.3421 | 0.3548 | | 1.2538 | 2.0 | 1002 | 1.0122 | 0.8141 | 0.7625 | 0.8091 | 0.7795 | 0.7946 | 0.8291 | 0.8141 | | 0.5576 | 3.0 | 1503 | 0.4823 | 0.8941 | 0.8797 | 0.9012 | 0.8786 | 0.8915 | 0.9021 | 0.8941 | | 0.3544 | 4.0 | 2004 | 0.3625 | 0.9110 | 0.9090 | 0.9170 | 0.9084 | 0.9108 | 0.9172 | 0.9110 | | 0.2603 | 5.0 | 2505 | 0.3281 | 0.9195 | 0.9170 | 0.9222 | 0.9159 | 0.9194 | 0.9229 | 0.9195 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1