hitsmy commited on
Commit
6743a8d
·
verified ·
1 Parent(s): a96a5dd

Model save

Browse files
README.md CHANGED
@@ -1,199 +1,57 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ model_name: Qwen2-VL-2B-Instruct-SFT
4
+ tags:
5
+ - generated_from_trainer
6
+ - trl
7
+ - sft
8
+ licence: license
9
  ---
10
 
11
+ # Model Card for Qwen2-VL-2B-Instruct-SFT
12
 
13
+ This model is a fine-tuned version of [None](https://huggingface.co/None).
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
 
16
+ ## Quick start
17
 
18
+ ```python
19
+ from transformers import pipeline
20
 
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="hitsmy/Qwen2-VL-2B-Instruct-SFT", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
 
27
+ ## Training procedure
28
 
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pjlab_moe/r1_v/runs/t2fin07w)
30
 
 
31
 
32
+ This model was trained with SFT.
 
 
 
 
 
 
33
 
34
+ ### Framework versions
35
 
36
+ - TRL: 0.14.0
37
+ - Transformers: 4.49.0.dev0
38
+ - Pytorch: 2.6.0
39
+ - Datasets: 3.3.1
40
+ - Tokenizers: 0.21.0
41
 
42
+ ## Citations
 
 
43
 
 
44
 
 
45
 
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9995764506565015,
3
+ "total_flos": 8.380405809686774e+17,
4
+ "train_loss": 0.5979039826635587,
5
+ "train_runtime": 5676.8996,
6
+ "train_samples": 37773,
7
+ "train_samples_per_second": 6.654,
8
+ "train_steps_per_second": 0.104
9
+ }
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/songmingyang/songmingyang/model/mm/Qwen2-VL-2B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8960,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1536,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_vl",
42
+ "spatial_patch_size": 14,
43
+ "torch_dtype": "bfloat16"
44
+ },
45
+ "vision_end_token_id": 151653,
46
+ "vision_start_token_id": 151652,
47
+ "vision_token_id": 151654,
48
+ "vocab_size": 151936
49
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": null,
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.49.0.dev0",
14
+ "use_cache": false
15
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93ba58e6c790bf087c8d5f6d7404a72eac1ce870fa43c54f9fb37e7cb4342390
3
+ size 4884798456
tokenizer_config.json CHANGED
@@ -138,7 +138,6 @@
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
141
- "processor_class": "Qwen2VLProcessor",
142
  "split_special_tokens": false,
143
  "tokenizer_class": "Qwen2Tokenizer",
144
  "unk_token": null
 
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
 
141
  "split_special_tokens": false,
142
  "tokenizer_class": "Qwen2Tokenizer",
143
  "unk_token": null
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9995764506565015,
3
+ "total_flos": 8.380405809686774e+17,
4
+ "train_loss": 0.5979039826635587,
5
+ "train_runtime": 5676.8996,
6
+ "train_samples": 37773,
7
+ "train_samples_per_second": 6.654,
8
+ "train_steps_per_second": 0.104
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,868 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9995764506565015,
5
+ "eval_steps": 500,
6
+ "global_step": 590,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00847098686997035,
13
+ "grad_norm": 13.040608406066895,
14
+ "learning_rate": 1.6949152542372882e-06,
15
+ "loss": 1.8317,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.0169419737399407,
20
+ "grad_norm": 7.28167200088501,
21
+ "learning_rate": 3.3898305084745763e-06,
22
+ "loss": 1.7467,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.025412960609911054,
27
+ "grad_norm": 3.6362063884735107,
28
+ "learning_rate": 5.084745762711865e-06,
29
+ "loss": 1.4691,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.0338839474798814,
34
+ "grad_norm": 2.443824291229248,
35
+ "learning_rate": 6.779661016949153e-06,
36
+ "loss": 1.1816,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.042354934349851756,
41
+ "grad_norm": 1.9287770986557007,
42
+ "learning_rate": 8.47457627118644e-06,
43
+ "loss": 1.0028,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.05082592121982211,
48
+ "grad_norm": 2.287205696105957,
49
+ "learning_rate": 1.016949152542373e-05,
50
+ "loss": 0.8979,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.05929690808979246,
55
+ "grad_norm": 1.8406411409378052,
56
+ "learning_rate": 1.1864406779661018e-05,
57
+ "loss": 0.8245,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.0677678949597628,
62
+ "grad_norm": 1.597153663635254,
63
+ "learning_rate": 1.3559322033898305e-05,
64
+ "loss": 0.801,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.07623888182973317,
69
+ "grad_norm": 1.4034295082092285,
70
+ "learning_rate": 1.5254237288135594e-05,
71
+ "loss": 0.7545,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.08470986869970351,
76
+ "grad_norm": 3.763864517211914,
77
+ "learning_rate": 1.694915254237288e-05,
78
+ "loss": 0.7336,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.09318085556967387,
83
+ "grad_norm": 1.451323390007019,
84
+ "learning_rate": 1.864406779661017e-05,
85
+ "loss": 0.7121,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.10165184243964422,
90
+ "grad_norm": 1.5066395998001099,
91
+ "learning_rate": 1.9999824983320176e-05,
92
+ "loss": 0.6881,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.11012282930961458,
97
+ "grad_norm": 1.4491875171661377,
98
+ "learning_rate": 1.9993700042749937e-05,
99
+ "loss": 0.673,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.11859381617958492,
104
+ "grad_norm": 1.27461838722229,
105
+ "learning_rate": 1.9978830393392338e-05,
106
+ "loss": 0.6507,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.12706480304955528,
111
+ "grad_norm": 1.191027045249939,
112
+ "learning_rate": 1.995522904651977e-05,
113
+ "loss": 0.6384,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.1355357899195256,
118
+ "grad_norm": 1.237403392791748,
119
+ "learning_rate": 1.992291665383325e-05,
120
+ "loss": 0.6637,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.14400677678949597,
125
+ "grad_norm": 1.1272355318069458,
126
+ "learning_rate": 1.9881921489391738e-05,
127
+ "loss": 0.635,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.15247776365946633,
132
+ "grad_norm": 1.168715476989746,
133
+ "learning_rate": 1.983227942487172e-05,
134
+ "loss": 0.6445,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.1609487505294367,
139
+ "grad_norm": 1.050166130065918,
140
+ "learning_rate": 1.9774033898178668e-05,
141
+ "loss": 0.6412,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.16941973739940702,
146
+ "grad_norm": 1.268314003944397,
147
+ "learning_rate": 1.9707235875437932e-05,
148
+ "loss": 0.6233,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.17789072426937738,
153
+ "grad_norm": 1.3509944677352905,
154
+ "learning_rate": 1.963194380639825e-05,
155
+ "loss": 0.6138,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.18636171113934774,
160
+ "grad_norm": 1.1367347240447998,
161
+ "learning_rate": 1.954822357328692e-05,
162
+ "loss": 0.6045,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.19483269800931807,
167
+ "grad_norm": 1.1019567251205444,
168
+ "learning_rate": 1.9456148433161387e-05,
169
+ "loss": 0.6176,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.20330368487928843,
174
+ "grad_norm": 1.0358731746673584,
175
+ "learning_rate": 1.9355798953807715e-05,
176
+ "loss": 0.5925,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.2117746717492588,
181
+ "grad_norm": 1.0830167531967163,
182
+ "learning_rate": 1.924726294324196e-05,
183
+ "loss": 0.6107,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.22024565861922915,
188
+ "grad_norm": 1.0958232879638672,
189
+ "learning_rate": 1.9130635372876245e-05,
190
+ "loss": 0.5953,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.22871664548919948,
195
+ "grad_norm": 1.0959957838058472,
196
+ "learning_rate": 1.9006018294416648e-05,
197
+ "loss": 0.6107,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.23718763235916984,
202
+ "grad_norm": 1.1108900308609009,
203
+ "learning_rate": 1.8873520750565716e-05,
204
+ "loss": 0.5817,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.2456586192291402,
209
+ "grad_norm": 1.057532787322998,
210
+ "learning_rate": 1.8733258679607674e-05,
211
+ "loss": 0.6108,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.25412960609911056,
216
+ "grad_norm": 1.2086259126663208,
217
+ "learning_rate": 1.858535481395986e-05,
218
+ "loss": 0.5875,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.2626005929690809,
223
+ "grad_norm": 1.0949163436889648,
224
+ "learning_rate": 1.8429938572779154e-05,
225
+ "loss": 0.5951,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.2710715798390512,
230
+ "grad_norm": 0.9488250017166138,
231
+ "learning_rate": 1.8267145948717338e-05,
232
+ "loss": 0.5868,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.2795425667090216,
237
+ "grad_norm": 1.0208171606063843,
238
+ "learning_rate": 1.8097119388924524e-05,
239
+ "loss": 0.5835,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.28801355357899194,
244
+ "grad_norm": 1.1816986799240112,
245
+ "learning_rate": 1.7920007670404738e-05,
246
+ "loss": 0.5703,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.29648454044896233,
251
+ "grad_norm": 1.1194366216659546,
252
+ "learning_rate": 1.7735965769832754e-05,
253
+ "loss": 0.5752,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.30495552731893266,
258
+ "grad_norm": 1.1583960056304932,
259
+ "learning_rate": 1.7545154727946065e-05,
260
+ "loss": 0.5967,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.313426514188903,
265
+ "grad_norm": 0.9982605576515198,
266
+ "learning_rate": 1.7347741508630673e-05,
267
+ "loss": 0.5798,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.3218975010588734,
272
+ "grad_norm": 1.17666494846344,
273
+ "learning_rate": 1.7143898852824005e-05,
274
+ "loss": 0.5647,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.3303684879288437,
279
+ "grad_norm": 0.9470816254615784,
280
+ "learning_rate": 1.6933805127362744e-05,
281
+ "loss": 0.546,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.33883947479881404,
286
+ "grad_norm": 0.9323899745941162,
287
+ "learning_rate": 1.671764416890793e-05,
288
+ "loss": 0.5567,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.34731046166878443,
293
+ "grad_norm": 1.0073851346969604,
294
+ "learning_rate": 1.649560512308378e-05,
295
+ "loss": 0.5649,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.35578144853875476,
300
+ "grad_norm": 1.2009499073028564,
301
+ "learning_rate": 1.6267882278971102e-05,
302
+ "loss": 0.5563,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.3642524354087251,
307
+ "grad_norm": 1.1687507629394531,
308
+ "learning_rate": 1.603467489910004e-05,
309
+ "loss": 0.5704,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.3727234222786955,
314
+ "grad_norm": 1.0257385969161987,
315
+ "learning_rate": 1.5796187045090943e-05,
316
+ "loss": 0.5473,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.3811944091486658,
321
+ "grad_norm": 1.0044339895248413,
322
+ "learning_rate": 1.5552627399095943e-05,
323
+ "loss": 0.5557,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.38966539601863615,
328
+ "grad_norm": 1.0678868293762207,
329
+ "learning_rate": 1.5304209081197425e-05,
330
+ "loss": 0.5487,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.39813638288860653,
335
+ "grad_norm": 0.9731626510620117,
336
+ "learning_rate": 1.5051149462923285e-05,
337
+ "loss": 0.5632,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.40660736975857686,
342
+ "grad_norm": 0.9739297032356262,
343
+ "learning_rate": 1.4793669977041978e-05,
344
+ "loss": 0.5604,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.41507835662854725,
349
+ "grad_norm": 1.1298881769180298,
350
+ "learning_rate": 1.4531995923803974e-05,
351
+ "loss": 0.5748,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.4235493434985176,
356
+ "grad_norm": 0.946855902671814,
357
+ "learning_rate": 1.4266356273799044e-05,
358
+ "loss": 0.5386,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.4320203303684879,
363
+ "grad_norm": 0.8729770183563232,
364
+ "learning_rate": 1.3996983467601921e-05,
365
+ "loss": 0.5672,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.4404913172384583,
370
+ "grad_norm": 0.9312366843223572,
371
+ "learning_rate": 1.372411321238166e-05,
372
+ "loss": 0.5441,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.44896230410842863,
377
+ "grad_norm": 0.9651340246200562,
378
+ "learning_rate": 1.3447984275652638e-05,
379
+ "loss": 0.5487,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.45743329097839897,
384
+ "grad_norm": 0.998904287815094,
385
+ "learning_rate": 1.3168838276347691e-05,
386
+ "loss": 0.5397,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.46590427784836935,
391
+ "grad_norm": 1.2853810787200928,
392
+ "learning_rate": 1.2886919473396212e-05,
393
+ "loss": 0.5386,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.4743752647183397,
398
+ "grad_norm": 1.006282925605774,
399
+ "learning_rate": 1.2602474551992165e-05,
400
+ "loss": 0.5501,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.48284625158831,
405
+ "grad_norm": 0.9217785596847534,
406
+ "learning_rate": 1.2315752407739093e-05,
407
+ "loss": 0.529,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.4913172384582804,
412
+ "grad_norm": 0.9664483070373535,
413
+ "learning_rate": 1.2027003928860936e-05,
414
+ "loss": 0.5295,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.49978822532825073,
419
+ "grad_norm": 1.0580369234085083,
420
+ "learning_rate": 1.1736481776669307e-05,
421
+ "loss": 0.5504,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.5082592121982211,
426
+ "grad_norm": 0.938615620136261,
427
+ "learning_rate": 1.1444440164479215e-05,
428
+ "loss": 0.5307,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.5167301990681914,
433
+ "grad_norm": 0.91016685962677,
434
+ "learning_rate": 1.115113463516683e-05,
435
+ "loss": 0.5214,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.5252011859381618,
440
+ "grad_norm": 0.9125617146492004,
441
+ "learning_rate": 1.085682183756377e-05,
442
+ "loss": 0.5407,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.5336721728081322,
447
+ "grad_norm": 0.9857435822486877,
448
+ "learning_rate": 1.0561759301883714e-05,
449
+ "loss": 0.5508,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.5421431596781024,
454
+ "grad_norm": 0.948715090751648,
455
+ "learning_rate": 1.026620521437775e-05,
456
+ "loss": 0.5275,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.5506141465480728,
461
+ "grad_norm": 0.9650415778160095,
462
+ "learning_rate": 9.970418191415703e-06,
463
+ "loss": 0.5143,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.5590851334180432,
468
+ "grad_norm": 0.9797161221504211,
469
+ "learning_rate": 9.674657053191079e-06,
470
+ "loss": 0.529,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.5675561202880135,
475
+ "grad_norm": 0.9044686555862427,
476
+ "learning_rate": 9.379180597247661e-06,
477
+ "loss": 0.5446,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.5760271071579839,
482
+ "grad_norm": 0.9637364149093628,
483
+ "learning_rate": 9.084247372025938e-06,
484
+ "loss": 0.5207,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.5844980940279543,
489
+ "grad_norm": 0.883882462978363,
490
+ "learning_rate": 8.790115450627486e-06,
491
+ "loss": 0.5177,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.5929690808979247,
496
+ "grad_norm": 0.9830591678619385,
497
+ "learning_rate": 8.497042204995299e-06,
498
+ "loss": 0.5386,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.6014400677678949,
503
+ "grad_norm": 0.9278344511985779,
504
+ "learning_rate": 8.205284080707634e-06,
505
+ "loss": 0.5258,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.6099110546378653,
510
+ "grad_norm": 0.8791617155075073,
511
+ "learning_rate": 7.915096372582467e-06,
512
+ "loss": 0.5407,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.6183820415078357,
517
+ "grad_norm": 0.9185119271278381,
518
+ "learning_rate": 7.626733001288852e-06,
519
+ "loss": 0.527,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.626853028377806,
524
+ "grad_norm": 0.8270648717880249,
525
+ "learning_rate": 7.3404462911607325e-06,
526
+ "loss": 0.5312,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.6353240152477764,
531
+ "grad_norm": 0.919711709022522,
532
+ "learning_rate": 7.056486749407552e-06,
533
+ "loss": 0.5254,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.6437950021177468,
538
+ "grad_norm": 0.8501454591751099,
539
+ "learning_rate": 6.775102846914912e-06,
540
+ "loss": 0.5159,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.652265988987717,
545
+ "grad_norm": 0.9181873202323914,
546
+ "learning_rate": 6.4965408008270355e-06,
547
+ "loss": 0.5175,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.6607369758576874,
552
+ "grad_norm": 0.8412730693817139,
553
+ "learning_rate": 6.221044359101317e-06,
554
+ "loss": 0.5249,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.6692079627276578,
559
+ "grad_norm": 0.8827643394470215,
560
+ "learning_rate": 5.948854587223465e-06,
561
+ "loss": 0.5222,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.6776789495976281,
566
+ "grad_norm": 0.7885822653770447,
567
+ "learning_rate": 5.680209657269871e-06,
568
+ "loss": 0.5122,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.6861499364675985,
573
+ "grad_norm": 0.8819693922996521,
574
+ "learning_rate": 5.415344639501754e-06,
575
+ "loss": 0.5287,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.6946209233375689,
580
+ "grad_norm": 0.8051272034645081,
581
+ "learning_rate": 5.1544912966735e-06,
582
+ "loss": 0.5132,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.7030919102075391,
587
+ "grad_norm": 0.831628680229187,
588
+ "learning_rate": 4.897877881235091e-06,
589
+ "loss": 0.5088,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.7115628970775095,
594
+ "grad_norm": 0.8426679968833923,
595
+ "learning_rate": 4.645728935606194e-06,
596
+ "loss": 0.5163,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.7200338839474799,
601
+ "grad_norm": 0.8241559267044067,
602
+ "learning_rate": 4.398265095696539e-06,
603
+ "loss": 0.5174,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.7285048708174502,
608
+ "grad_norm": 0.8578051924705505,
609
+ "learning_rate": 4.1557028978446415e-06,
610
+ "loss": 0.5129,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.7369758576874206,
615
+ "grad_norm": 0.8619440197944641,
616
+ "learning_rate": 3.918254589343683e-06,
617
+ "loss": 0.5102,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.745446844557391,
622
+ "grad_norm": 0.8140995502471924,
623
+ "learning_rate": 3.6861279427204634e-06,
624
+ "loss": 0.5052,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.7539178314273612,
629
+ "grad_norm": 0.7656389474868774,
630
+ "learning_rate": 3.4595260739298174e-06,
631
+ "loss": 0.5247,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.7623888182973316,
636
+ "grad_norm": 0.780764102935791,
637
+ "learning_rate": 3.2386472646236565e-06,
638
+ "loss": 0.5139,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.770859805167302,
643
+ "grad_norm": 0.7912269234657288,
644
+ "learning_rate": 3.023684788650154e-06,
645
+ "loss": 0.5184,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.7793307920372723,
650
+ "grad_norm": 0.7656291127204895,
651
+ "learning_rate": 2.814826742934823e-06,
652
+ "loss": 0.5168,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.7878017789072427,
657
+ "grad_norm": 0.7654049396514893,
658
+ "learning_rate": 2.6122558828915647e-06,
659
+ "loss": 0.5127,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.7962727657772131,
664
+ "grad_norm": 0.8781611919403076,
665
+ "learning_rate": 2.4161494625076164e-06,
666
+ "loss": 0.5068,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.8047437526471835,
671
+ "grad_norm": 0.7922006249427795,
672
+ "learning_rate": 2.2266790792424096e-06,
673
+ "loss": 0.5243,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.8132147395171537,
678
+ "grad_norm": 0.7805562019348145,
679
+ "learning_rate": 2.044010523875969e-06,
680
+ "loss": 0.5114,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.8216857263871241,
685
+ "grad_norm": 0.8500534296035767,
686
+ "learning_rate": 1.868303635438332e-06,
687
+ "loss": 0.4978,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.8301567132570945,
692
+ "grad_norm": 0.7626408934593201,
693
+ "learning_rate": 1.699712161346846e-06,
694
+ "loss": 0.5108,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.8386277001270648,
699
+ "grad_norm": 0.7929341197013855,
700
+ "learning_rate": 1.5383836228737815e-06,
701
+ "loss": 0.5126,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.8470986869970352,
706
+ "grad_norm": 0.7848495244979858,
707
+ "learning_rate": 1.3844591860619382e-06,
708
+ "loss": 0.5037,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.8555696738670056,
713
+ "grad_norm": 0.7474762797355652,
714
+ "learning_rate": 1.2380735382012576e-06,
715
+ "loss": 0.5151,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.8640406607369758,
720
+ "grad_norm": 0.7843493819236755,
721
+ "learning_rate": 1.0993547699744366e-06,
722
+ "loss": 0.5114,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.8725116476069462,
727
+ "grad_norm": 0.7787851095199585,
728
+ "learning_rate": 9.684242633747642e-07,
729
+ "loss": 0.5111,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.8809826344769166,
734
+ "grad_norm": 0.7845005989074707,
735
+ "learning_rate": 8.453965854941748e-07,
736
+ "loss": 0.5046,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.8894536213468869,
741
+ "grad_norm": 0.7967577576637268,
742
+ "learning_rate": 7.303793882745181e-07,
743
+ "loss": 0.5016,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.8979246082168573,
748
+ "grad_norm": 0.7523807883262634,
749
+ "learning_rate": 6.234733143097215e-07,
750
+ "loss": 0.4974,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.9063955950868277,
755
+ "grad_norm": 0.7827950119972229,
756
+ "learning_rate": 5.247719087812897e-07,
757
+ "loss": 0.4984,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.9148665819567979,
762
+ "grad_norm": 0.7315457463264465,
763
+ "learning_rate": 4.343615376042065e-07,
764
+ "loss": 0.5147,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.9233375688267683,
769
+ "grad_norm": 0.8033891916275024,
770
+ "learning_rate": 3.5232131185484075e-07,
771
+ "loss": 0.5116,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.9318085556967387,
776
+ "grad_norm": 0.7409123778343201,
777
+ "learning_rate": 2.78723018547008e-07,
778
+ "loss": 0.4918,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.940279542566709,
783
+ "grad_norm": 0.7420827150344849,
784
+ "learning_rate": 2.1363105781673888e-07,
785
+ "loss": 0.5066,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.9487505294366794,
790
+ "grad_norm": 0.7862848043441772,
791
+ "learning_rate": 1.5710238657074218e-07,
792
+ "loss": 0.5183,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.9572215163066498,
797
+ "grad_norm": 0.7402486205101013,
798
+ "learning_rate": 1.0918646864784166e-07,
799
+ "loss": 0.5182,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.96569250317662,
804
+ "grad_norm": 0.7287072539329529,
805
+ "learning_rate": 6.99252315370269e-08,
806
+ "loss": 0.4976,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.9741634900465904,
811
+ "grad_norm": 0.7665913105010986,
812
+ "learning_rate": 3.9353029689974676e-08,
813
+ "loss": 0.5127,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.9826344769165608,
818
+ "grad_norm": 0.6921188831329346,
819
+ "learning_rate": 1.7496614460135174e-08,
820
+ "loss": 0.5173,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.9911054637865311,
825
+ "grad_norm": 0.7035255432128906,
826
+ "learning_rate": 4.375110694713192e-09,
827
+ "loss": 0.4961,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.9995764506565015,
832
+ "grad_norm": 0.7657430768013,
833
+ "learning_rate": 0.0,
834
+ "loss": 0.5122,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.9995764506565015,
839
+ "step": 590,
840
+ "total_flos": 8.380405809686774e+17,
841
+ "train_loss": 0.5979039826635587,
842
+ "train_runtime": 5676.8996,
843
+ "train_samples_per_second": 6.654,
844
+ "train_steps_per_second": 0.104
845
+ }
846
+ ],
847
+ "logging_steps": 5,
848
+ "max_steps": 590,
849
+ "num_input_tokens_seen": 0,
850
+ "num_train_epochs": 1,
851
+ "save_steps": 500,
852
+ "stateful_callbacks": {
853
+ "TrainerControl": {
854
+ "args": {
855
+ "should_epoch_stop": false,
856
+ "should_evaluate": false,
857
+ "should_log": false,
858
+ "should_save": false,
859
+ "should_training_stop": false
860
+ },
861
+ "attributes": {}
862
+ }
863
+ },
864
+ "total_flos": 8.380405809686774e+17,
865
+ "train_batch_size": 4,
866
+ "trial_name": null,
867
+ "trial_params": null
868
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4201fbf24a6175bb8994b3536ee3da6283f8bf00816fd2000cb9ac77dfbdeec1
3
+ size 7160