--- library_name: diambra tags: - ultimate-mortal-kombat-3 - deep-reinforcement-learning - reinforcement-learning - stable-baseline3 - ppo --- # Model Card for Model ID A DRL agent playing Ultimate Mortal Kombat 3 trained using diambra ai library ## Codes Github repos(Give a star if found useful): * https://github.com/hishamcse/Advanced-DRL-Renegades-Game-Bots * https://github.com/hishamcse/DRL-Renegades-Game-Bots * https://github.com/hishamcse/Robo-Chess ## Model Details - **My Code for this model:** https://github.com/hishamcse/Advanced-DRL-Renegades-Game-Bots/tree/main/VII%20-%20Diambra_AI_Ultimate-Mortal-Kombat-3 - **Tutorial:** https://github.com/alexpalms/deep-rl-class/blob/main/units/en/unitbonus3 - **Documentation:** https://docs.diambra.ai/ ## Training Details #### Training Hyperparameters ``` folders: parent_dir: "./results/" model_name: "sr6_128x4_das_nc" settings: game_id: "umk3" step_ratio: 6 frame_shape: !!python/tuple [128, 128, 1] continue_game: 0.0 action_space: "discrete" characters: "Skorpion" difficulty: 5 wrappers_settings: normalize_reward: true no_attack_buttons_combinations: true stack_frames: 4 dilation: 1 add_last_action: true stack_actions: 12 scale: true exclude_image_scaling: true role_relative: true flatten: true filter_keys: ["action", "own_health", "opp_health", "own_side", "opp_side", "opp_character", "stage", "timer"] policy_kwargs: #net_arch: [{ pi: [64, 64], vf: [32, 32] }] net_arch: [256, 256] activation_fn: "leaky_relu" ppo_settings: gamma: 0.94 model_checkpoint: "660000" # 0: No checkpoint, else: Load checkpoint (if previously trained) learning_rate: [1.0e-3, 2.5e-6] # To start clip_range: [0.3, 0.015] # To start batch_size: 512 #8 #nminibatches gave different batch size depending on the number of environments: batch_size = (n_steps * n_envs) // nminibatches n_epochs: 14 n_steps: 512 gae_lambda: 0.9520674913500098 ent_coef: 2.361611947920214e-06 vf_coef: 0.6420316461542878 autosave_freq: 50000 time_steps: 1000000 ```