File size: 3,950 Bytes
87e2f2c
fe7adc5
 
 
 
 
 
 
 
 
 
 
 
87e2f2c
 
fe7adc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language: ko
license: apache-2.0
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- financial
- credit-rating
- korean
- llama
- unsloth
- fine-tuned
model_name: FinCreditLlama-3.2-3B
pipeline_tag: text-generation
---

# FinCreditLlama-3.2-3B

## ๋ชจ๋ธ ๊ฐœ์š”
FinCreditLlama-3.2-3B๋Š” ๊ธˆ์œต ์‹ ์šฉ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ ํ•œ๊ตญ์–ด ์–ธ์–ด ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

**๋ฒ ์ด์Šค ๋ชจ๋ธ**: unsloth/Llama-3.2-3B-Instruct
**๋ฐ์ดํ„ฐ์…‹**: himedia/financial_dummy_data_v4
**ํ•™์Šต ๋ฐฉ๋ฒ•**: LoRA (Low-Rank Adaptation) - **๋ณ‘ํ•ฉ๋œ ์ „์ฒด ๋ชจ๋ธ**
**ํ•™์Šต ์ผ์‹œ**: 20250702_181705

## ๐Ÿ“Š ํ•™์Šต ๊ฒฐ๊ณผ
- **Final Training Loss**: 0.8515
- **Final Validation Loss**: 0.7593
- **Best Validation Loss**: 0.7593 (step 10)
- **Overall Improvement**: 62.7%
- **Training Time**: 0.64 minutes

## ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ
- **Learning Rate**: 0.0002
- **Max Steps**: 10
- **Batch Size**: 2
- **Gradient Accumulation**: 8
- **LoRA r**: 64
- **LoRA alpha**: 64
- **Max Sequence Length**: 2048
- **Warmup Steps**: 5

## ๐Ÿ”ง ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰
- **GPU**: NVIDIA A100-SXM4-40GB
- **Peak Memory**: 6.674 GB
- **Memory Usage**: 16.9%

## ์‚ฌ์šฉ ๋ฐฉ๋ฒ•

### ์ผ๋ฐ˜์ ์ธ ์‚ฌ์šฉ (Transformers)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained("himedia/fincredit-lamma-3.2-3b-lr2e04-bs16-r64-steps10-20250702_181705")
model = AutoModelForCausalLM.from_pretrained("himedia/fincredit-lamma-3.2-3b-lr2e04-bs16-r64-steps10-20250702_181705")

# ๊ฐ„๋‹จํ•œ ์ถ”๋ก  ์˜ˆ์ œ
prompt = "๊ณ ๊ฐ์˜ ์‹ ์šฉ๋“ฑ๊ธ‰์„ ํ‰๊ฐ€ํ•ด์ฃผ์„ธ์š”:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```

### vLLM ์‚ฌ์šฉ (๊ณ ์„ฑ๋Šฅ ์ถ”๋ก )
```python
from vllm import LLM, SamplingParams

# vLLM ๋กœ๋“œ (๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ์ด๋ฏ€๋กœ ๋ฐ”๋กœ ์‚ฌ์šฉ ๊ฐ€๋Šฅ)
llm = LLM(
    model="himedia/fincredit-lamma-3.2-3b-lr2e04-bs16-r64-steps10-20250702_181705",
    max_model_len=2048,
    gpu_memory_utilization=0.85
)

# ์ƒ˜ํ”Œ๋ง ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •
sampling_params = SamplingParams(
    temperature=0.7,
    top_p=0.9,
    max_tokens=200
)

# ์ถ”๋ก 
prompts = ["๊ณ ๊ฐ์˜ ์‹ ์šฉ๋“ฑ๊ธ‰์„ ํ‰๊ฐ€ํ•ด์ฃผ์„ธ์š”:"]
outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}")
    print(f"Generated text: {generated_text!r}")
```

### Unsloth ํ…Œ์ŠคํŠธ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉ
```python
from unsloth import FastLanguageModel

# ์›๋ณธ LoRA ์–ด๋Œ‘ํ„ฐ๋กœ ํ…Œ์ŠคํŠธ
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "himedia/fincredit-Llama-3.2-3B-lr2e04-bs16-r64-steps1000-20250623_060351",  # LoRA ์–ด๋Œ‘ํ„ฐ
    max_seq_length = 2048,
    dtype = None,
    load_in_4bit = True,
)
```

## ๐Ÿ“Š ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ
์ด ๋ ˆํฌ์ง€ํ† ๋ฆฌ์—๋Š” ๋‹ค์Œ ํ•™์Šต ๊ด€๋ จ ํŒŒ์ผ๋“ค์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค:
- `training_log.json`: ์ „์ฒด ํ•™์Šต ๋กœ๊ทธ (JSON ํ˜•์‹)
- `FinCreditLlama-3.2-3B_20250702_181705_training_curves.png`: ํ•™์Šต ๊ณก์„  ์‹œ๊ฐํ™” ์ด๋ฏธ์ง€

## ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋ช… ๊ตฌ์„ฑ
```
fincredit-lamma-3.2-3b-lr2e04-bs16-r64-steps10-20250702_181705 = fincredit-lamma3-4b-lr2e04-bs2-r64-steps10-20250702_181705
```
- `fincredit-lamma3-4b`: ๋ชจ๋ธ ๊ธฐ๋ณธ๋ช…
- `lr2e04`: Learning Rate
- `bs2`: Batch Size
- `r64`: LoRA rank
- `steps10`: ํ•™์Šต ์Šคํ…
- `20250702_181705`: ํ•™์Šต ์‹œ๊ฐ

## ๋ฐฐํฌ ์ •๋ณด
- **๋ชจ๋ธ ํƒ€์ž…**: ๋ณ‘ํ•ฉ๋œ ์ „์ฒด ๋ชจ๋ธ (LoRA ์–ด๋Œ‘ํ„ฐ๊ฐ€ ๋ฒ ์ด์Šค ๋ชจ๋ธ์— ๋ณ‘ํ•ฉ๋จ)
- **vLLM ํ˜ธํ™˜**: โœ… ์™„์ „ ํ˜ธํ™˜
- **RunPod ๋ฐฐํฌ**: โœ… ์ง€์›
- **์›๋ณธ LoRA ์–ด๋Œ‘ํ„ฐ**: `himedia/fincredit-Llama-3.2-3B-lr2e04-bs16-r64-steps1000-20250623_060351`

## ์„ฑ๋Šฅ
์ด ๋ชจ๋ธ์€ ํ•œ๊ตญ์–ด ๊ธˆ์œต ํ…์ŠคํŠธ์— ๋Œ€ํ•ด ํŒŒ์ธํŠœ๋‹๋˜์–ด ์‹ ์šฉ ํ‰๊ฐ€ ๊ด€๋ จ ์งˆ์˜์‘๋‹ต์— ํŠนํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

## ๋ผ์ด์„ ์Šค
Apache 2.0