End of training
Browse files- README.md +181 -0
- adapter.ar_eg.safetensors +3 -0
- preprocessor_config.json +1 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: facebook/mms-1b-all
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fleurs
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: wav2vec2-large-mms-1b-arabic-colab
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: fleurs
|
18 |
+
type: fleurs
|
19 |
+
config: ar_eg
|
20 |
+
split: test
|
21 |
+
args: ar_eg
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.2590647661915479
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# wav2vec2-large-mms-1b-arabic-colab
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2922
|
36 |
+
- Wer: 0.2591
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 1e-05
|
56 |
+
- train_batch_size: 4
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 100
|
62 |
+
- num_epochs: 20
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
69 |
+
| 18.9344 | 0.19 | 100 | 17.8048 | 1.0 |
|
70 |
+
| 15.6959 | 0.38 | 200 | 14.1448 | 1.0 |
|
71 |
+
| 11.9387 | 0.57 | 300 | 9.8417 | 1.0 |
|
72 |
+
| 7.554 | 0.76 | 400 | 5.3727 | 1.0 |
|
73 |
+
| 4.3953 | 0.95 | 500 | 3.5681 | 1.0 |
|
74 |
+
| 3.3533 | 1.14 | 600 | 3.1439 | 1.0 |
|
75 |
+
| 2.9309 | 1.33 | 700 | 2.5171 | 0.9987 |
|
76 |
+
| 2.1985 | 1.52 | 800 | 1.7128 | 0.8522 |
|
77 |
+
| 1.5126 | 1.71 | 900 | 1.1276 | 0.5744 |
|
78 |
+
| 1.0376 | 1.9 | 1000 | 0.7830 | 0.4400 |
|
79 |
+
| 0.7702 | 2.09 | 1100 | 0.5959 | 0.3765 |
|
80 |
+
| 0.6274 | 2.28 | 1200 | 0.4986 | 0.3363 |
|
81 |
+
| 0.5423 | 2.47 | 1300 | 0.4473 | 0.3197 |
|
82 |
+
| 0.494 | 2.66 | 1400 | 0.4153 | 0.3046 |
|
83 |
+
| 0.4372 | 2.85 | 1500 | 0.3940 | 0.2946 |
|
84 |
+
| 0.4667 | 3.04 | 1600 | 0.3791 | 0.2887 |
|
85 |
+
| 0.4228 | 3.23 | 1700 | 0.3670 | 0.2823 |
|
86 |
+
| 0.4177 | 3.42 | 1800 | 0.3571 | 0.2803 |
|
87 |
+
| 0.3824 | 3.61 | 1900 | 0.3494 | 0.2789 |
|
88 |
+
| 0.4002 | 3.8 | 2000 | 0.3435 | 0.2782 |
|
89 |
+
| 0.4112 | 3.99 | 2100 | 0.3385 | 0.2776 |
|
90 |
+
| 0.3788 | 4.18 | 2200 | 0.3342 | 0.2768 |
|
91 |
+
| 0.4079 | 4.37 | 2300 | 0.3305 | 0.2752 |
|
92 |
+
| 0.3939 | 4.56 | 2400 | 0.3271 | 0.2733 |
|
93 |
+
| 0.3601 | 4.75 | 2500 | 0.3250 | 0.2724 |
|
94 |
+
| 0.3443 | 4.94 | 2600 | 0.3223 | 0.2727 |
|
95 |
+
| 0.3723 | 5.13 | 2700 | 0.3200 | 0.2724 |
|
96 |
+
| 0.3669 | 5.32 | 2800 | 0.3182 | 0.2704 |
|
97 |
+
| 0.3117 | 5.51 | 2900 | 0.3167 | 0.2693 |
|
98 |
+
| 0.3658 | 5.7 | 3000 | 0.3150 | 0.2694 |
|
99 |
+
| 0.3731 | 5.89 | 3100 | 0.3132 | 0.2683 |
|
100 |
+
| 0.3542 | 6.08 | 3200 | 0.3122 | 0.2684 |
|
101 |
+
| 0.3667 | 6.27 | 3300 | 0.3108 | 0.2681 |
|
102 |
+
| 0.3115 | 6.46 | 3400 | 0.3099 | 0.2671 |
|
103 |
+
| 0.3466 | 6.65 | 3500 | 0.3092 | 0.2663 |
|
104 |
+
| 0.3497 | 6.84 | 3600 | 0.3082 | 0.2656 |
|
105 |
+
| 0.3276 | 7.03 | 3700 | 0.3076 | 0.2667 |
|
106 |
+
| 0.3316 | 7.22 | 3800 | 0.3070 | 0.2651 |
|
107 |
+
| 0.3324 | 7.41 | 3900 | 0.3060 | 0.2656 |
|
108 |
+
| 0.323 | 7.6 | 4000 | 0.3054 | 0.2661 |
|
109 |
+
| 0.3411 | 7.79 | 4100 | 0.3045 | 0.2641 |
|
110 |
+
| 0.3583 | 7.98 | 4200 | 0.3037 | 0.2649 |
|
111 |
+
| 0.3299 | 8.17 | 4300 | 0.3035 | 0.2649 |
|
112 |
+
| 0.2899 | 8.37 | 4400 | 0.3030 | 0.2643 |
|
113 |
+
| 0.3432 | 8.56 | 4500 | 0.3025 | 0.2651 |
|
114 |
+
| 0.3275 | 8.75 | 4600 | 0.3018 | 0.2631 |
|
115 |
+
| 0.3652 | 8.94 | 4700 | 0.3011 | 0.2637 |
|
116 |
+
| 0.3373 | 9.13 | 4800 | 0.3009 | 0.2626 |
|
117 |
+
| 0.3097 | 9.32 | 4900 | 0.3005 | 0.2627 |
|
118 |
+
| 0.3163 | 9.51 | 5000 | 0.2997 | 0.2623 |
|
119 |
+
| 0.3443 | 9.7 | 5100 | 0.2995 | 0.2623 |
|
120 |
+
| 0.346 | 9.89 | 5200 | 0.2989 | 0.2626 |
|
121 |
+
| 0.302 | 10.08 | 5300 | 0.2988 | 0.2624 |
|
122 |
+
| 0.3252 | 10.27 | 5400 | 0.2983 | 0.2623 |
|
123 |
+
| 0.3316 | 10.46 | 5500 | 0.2980 | 0.2632 |
|
124 |
+
| 0.3424 | 10.65 | 5600 | 0.2975 | 0.2629 |
|
125 |
+
| 0.3205 | 10.84 | 5700 | 0.2977 | 0.2622 |
|
126 |
+
| 0.3164 | 11.03 | 5800 | 0.2973 | 0.2618 |
|
127 |
+
| 0.3348 | 11.22 | 5900 | 0.2968 | 0.2619 |
|
128 |
+
| 0.3236 | 11.41 | 6000 | 0.2967 | 0.2612 |
|
129 |
+
| 0.3073 | 11.6 | 6100 | 0.2962 | 0.2627 |
|
130 |
+
| 0.3129 | 11.79 | 6200 | 0.2964 | 0.2623 |
|
131 |
+
| 0.3319 | 11.98 | 6300 | 0.2961 | 0.2621 |
|
132 |
+
| 0.2974 | 12.17 | 6400 | 0.2960 | 0.2613 |
|
133 |
+
| 0.3557 | 12.36 | 6500 | 0.2955 | 0.2612 |
|
134 |
+
| 0.3068 | 12.55 | 6600 | 0.2957 | 0.2619 |
|
135 |
+
| 0.3292 | 12.74 | 6700 | 0.2954 | 0.2619 |
|
136 |
+
| 0.3278 | 12.93 | 6800 | 0.2952 | 0.2612 |
|
137 |
+
| 0.314 | 13.12 | 6900 | 0.2948 | 0.2614 |
|
138 |
+
| 0.3182 | 13.31 | 7000 | 0.2949 | 0.2618 |
|
139 |
+
| 0.3322 | 13.5 | 7100 | 0.2948 | 0.2612 |
|
140 |
+
| 0.3089 | 13.69 | 7200 | 0.2944 | 0.2616 |
|
141 |
+
| 0.3176 | 13.88 | 7300 | 0.2943 | 0.2613 |
|
142 |
+
| 0.3025 | 14.07 | 7400 | 0.2942 | 0.2612 |
|
143 |
+
| 0.3277 | 14.26 | 7500 | 0.2941 | 0.2613 |
|
144 |
+
| 0.3241 | 14.45 | 7600 | 0.2940 | 0.2617 |
|
145 |
+
| 0.3084 | 14.64 | 7700 | 0.2938 | 0.2614 |
|
146 |
+
| 0.324 | 14.83 | 7800 | 0.2935 | 0.2612 |
|
147 |
+
| 0.3229 | 15.02 | 7900 | 0.2934 | 0.2609 |
|
148 |
+
| 0.3224 | 15.21 | 8000 | 0.2933 | 0.2602 |
|
149 |
+
| 0.2859 | 15.4 | 8100 | 0.2932 | 0.2604 |
|
150 |
+
| 0.3173 | 15.59 | 8200 | 0.2931 | 0.2598 |
|
151 |
+
| 0.3399 | 15.78 | 8300 | 0.2931 | 0.2602 |
|
152 |
+
| 0.3176 | 15.97 | 8400 | 0.2930 | 0.2598 |
|
153 |
+
| 0.2993 | 16.16 | 8500 | 0.2930 | 0.2602 |
|
154 |
+
| 0.3289 | 16.35 | 8600 | 0.2930 | 0.2598 |
|
155 |
+
| 0.3149 | 16.54 | 8700 | 0.2928 | 0.2601 |
|
156 |
+
| 0.3172 | 16.73 | 8800 | 0.2927 | 0.2599 |
|
157 |
+
| 0.3204 | 16.92 | 8900 | 0.2926 | 0.2597 |
|
158 |
+
| 0.3117 | 17.11 | 9000 | 0.2926 | 0.2604 |
|
159 |
+
| 0.3051 | 17.3 | 9100 | 0.2927 | 0.2608 |
|
160 |
+
| 0.3296 | 17.49 | 9200 | 0.2927 | 0.2604 |
|
161 |
+
| 0.309 | 17.68 | 9300 | 0.2926 | 0.2602 |
|
162 |
+
| 0.3138 | 17.87 | 9400 | 0.2925 | 0.2593 |
|
163 |
+
| 0.2802 | 18.06 | 9500 | 0.2925 | 0.2594 |
|
164 |
+
| 0.308 | 18.25 | 9600 | 0.2925 | 0.2593 |
|
165 |
+
| 0.3076 | 18.44 | 9700 | 0.2925 | 0.2591 |
|
166 |
+
| 0.312 | 18.63 | 9800 | 0.2923 | 0.2592 |
|
167 |
+
| 0.31 | 18.82 | 9900 | 0.2923 | 0.2593 |
|
168 |
+
| 0.3317 | 19.01 | 10000 | 0.2923 | 0.2592 |
|
169 |
+
| 0.3357 | 19.2 | 10100 | 0.2923 | 0.2593 |
|
170 |
+
| 0.302 | 19.39 | 10200 | 0.2922 | 0.2596 |
|
171 |
+
| 0.294 | 19.58 | 10300 | 0.2923 | 0.2592 |
|
172 |
+
| 0.3158 | 19.77 | 10400 | 0.2923 | 0.2593 |
|
173 |
+
| 0.3025 | 19.96 | 10500 | 0.2922 | 0.2591 |
|
174 |
+
|
175 |
+
|
176 |
+
### Framework versions
|
177 |
+
|
178 |
+
- Transformers 4.35.0.dev0
|
179 |
+
- Pytorch 2.1.0+cu118
|
180 |
+
- Datasets 2.14.6
|
181 |
+
- Tokenizers 0.14.1
|
adapter.ar_eg.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b747a96c3c8e432733f5b9d9462bd92cdd68a22d773f9a02fbb3bd7a276935b
|
3 |
+
size 9177740
|
preprocessor_config.json
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
"padding_value": 0.0,
|
|
|
7 |
"return_attention_mask": true,
|
8 |
"sampling_rate": 16000
|
9 |
}
|
|
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2Processor",
|
8 |
"return_attention_mask": true,
|
9 |
"sampling_rate": 16000
|
10 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3859514250
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76ffe7be8f0a73a125a243035cfe5ab1e361690d023799219494836c26607410
|
3 |
size 3859514250
|