nassimaODL commited on
Commit
9103cb2
·
1 Parent(s): 8814ae3

correct the readme

Browse files
Files changed (1) hide show
  1. README.md +19 -3
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  license: apache-2.0
3
  base_model: Qwen/Qwen2.5-7B
4
  library_name: peft
@@ -8,8 +10,12 @@ tags:
8
  - french
9
  - qwen2.5
10
  - lora
 
 
11
  ---
12
- # ssml-break2ssml-fr-lora
 
 
13
 
14
  This is the second-stage LoRA adapter for **French SSML generation**, converting *pause-annotated text* into full SSML markup with `<break>` tags.
15
 
@@ -52,6 +58,9 @@ Output: Bonjour<break time="250ms"/> comment vas-tu ?
52
 
53
  ---
54
 
 
 
 
55
  ```python
56
  from transformers import AutoTokenizer, AutoModelForCausalLM
57
  from peft import PeftModel
@@ -69,8 +78,10 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))```
69
 
70
  ---
71
 
 
72
  ## 🧪 Evaluation Summary
73
 
 
74
  | Metric | Value |
75
  |--------------------------|---------------|
76
  | Pause Insertion Accuracy | 87.3% |
@@ -79,9 +90,12 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))```
79
 
80
  Evaluation was performed on a held-out French validation set with annotated SSML pauses. Mean Opinion Score (MOS) improvements were assessed using TTS outputs rendered with Azure Henri voice and rated by 30 native French speakers.
81
 
 
82
  ---
83
 
84
- ## �� Training Data
 
 
85
 
86
  This LoRA adapter was trained on a corpus of ~4,500 French utterances. Input texts were annotated with symbolic pause indicators (e.g., `#250` for 250ms), automatically aligned using a combination of Whisper-Kyutai timestamping and F0/syntactic heuristics.
87
 
@@ -111,7 +125,7 @@ Training was performed using the [Unsloth](https://github.com/unslothai/unsloth)
111
 
112
  ---
113
 
114
- ## ⚠️ Limitations
115
 
116
  - Only `<break>` tags are supported; no pitch, rate, or emphasis control yet.
117
  - Pause accuracy is sensitive to punctuation and malformed inputs.
@@ -120,6 +134,8 @@ Training was performed using the [Unsloth](https://github.com/unslothai/unsloth)
120
  🔗 [`nassimaODL/ssml-text2breaks-fr-lora`](https://huggingface.co/nassimaODL/ssml-text2breaks-fr-lora)
121
 
122
  ---
 
 
123
  @inproceedings{ould-ouali2025improving,
124
  author = {Nassima Ould-Ouali and Awais Sani and Tim Luka Horstmann and Jonah Dauvet and Ruben Bueno and Éric Moulines},
125
  title = {Improving French Synthetic Speech Quality via SSML Prosody Control},
 
1
  ---
2
+
3
+
4
  license: apache-2.0
5
  base_model: Qwen/Qwen2.5-7B
6
  library_name: peft
 
10
  - french
11
  - qwen2.5
12
  - lora
13
+
14
+
15
  ---
16
+
17
+ # 🗣️ ssml-break2ssml-fr-lora
18
+
19
 
20
  This is the second-stage LoRA adapter for **French SSML generation**, converting *pause-annotated text* into full SSML markup with `<break>` tags.
21
 
 
58
 
59
  ---
60
 
61
+ ### How to run the code
62
+
63
+
64
  ```python
65
  from transformers import AutoTokenizer, AutoModelForCausalLM
66
  from peft import PeftModel
 
78
 
79
  ---
80
 
81
+
82
  ## 🧪 Evaluation Summary
83
 
84
+
85
  | Metric | Value |
86
  |--------------------------|---------------|
87
  | Pause Insertion Accuracy | 87.3% |
 
90
 
91
  Evaluation was performed on a held-out French validation set with annotated SSML pauses. Mean Opinion Score (MOS) improvements were assessed using TTS outputs rendered with Azure Henri voice and rated by 30 native French speakers.
92
 
93
+
94
  ---
95
 
96
+
97
+ ## 📚 Training Data
98
+
99
 
100
  This LoRA adapter was trained on a corpus of ~4,500 French utterances. Input texts were annotated with symbolic pause indicators (e.g., `#250` for 250ms), automatically aligned using a combination of Whisper-Kyutai timestamping and F0/syntactic heuristics.
101
 
 
125
 
126
  ---
127
 
128
+ ## ⚠️ Limitations
129
 
130
  - Only `<break>` tags are supported; no pitch, rate, or emphasis control yet.
131
  - Pause accuracy is sensitive to punctuation and malformed inputs.
 
134
  🔗 [`nassimaODL/ssml-text2breaks-fr-lora`](https://huggingface.co/nassimaODL/ssml-text2breaks-fr-lora)
135
 
136
  ---
137
+
138
+ ## 📖 Citation
139
  @inproceedings{ould-ouali2025improving,
140
  author = {Nassima Ould-Ouali and Awais Sani and Tim Luka Horstmann and Jonah Dauvet and Ruben Bueno and Éric Moulines},
141
  title = {Improving French Synthetic Speech Quality via SSML Prosody Control},