--- license: apache-2.0 language: - zh - en tags: - moe --- # Chinese-Mixtral-Instruct-GGUF
**Chinese Mixtral GitHub repository: https://github.com/ymcui/Chinese-Mixtral** This repository contains the GGUF-v3 models (llama.cpp compatible) for **Chinese-Mixtral-Instruct** (chat/instruction model). **Note: When using instruction/chat model, you MUST follow the official prompt template! Example: [chat.sh](https://github.com/ymcui/Chinese-Mixtral/blob/main/scripts/llamacpp/chat.sh)** ## Performance Metric: PPL, lower is better | Quant | Size ↓ | PPL | | ------- | ------- | ------------------ | | IQ1_S | 9.8 GB | 9.5782 +/- 0.08909 | | IQ1_M | 10.8 GB | 7.4666 +/- 0.06741 | | IQ2_XXS | 12.3 GB | 6.3923 +/- 0.05674 | | IQ2_XS | 13.7 GB | 6.0606 +/- 0.05834 | | IQ2_S | 14.1 GB | 4.7617 +/- 0.04177 | | IQ2_M | 15.5 GB | 4.5911 +/- 0.04054 | | Q2_K | 17.3 GB | 4.8592 +/- 0.04303 | | IQ3_XXS | 18.3 GB | 4.3557 +/- 0.03846 | | IQ3_XS | 19.3 GB | 4.3328 +/- 0.03779 | | IQ3_S | 20.4 GB | 4.3138 +/- 0.03785 | | IQ3_M | 21.4 GB | 4.3024 +/- 0.03775 | | Q3_K | 22.5 GB | 4.4334 +/- 0.03937 | | IQ4_XS | 25.1 GB | 4.2324 +/- 0.03757 | | Q4_0 | 26.4 GB | 4.2688 +/- 0.03787 | | IQ4_NL | 26.5 GB | 4.2384 +/- 0.03763 | | Q4_K | 28.4 GB | 4.2433 +/- 0.03768 | | Q5_0 | 32.2 GB | 4.2142 +/- 0.03733 | | Q5_K | 33.2 GB | 4.2177 +/- 0.03743 | | Q6_K | 38.4 GB | 4.2184 +/- 0.03754 | | Q8_0 | 49.6 GB | 4.2053 +/- 0.03732 | | F16 | 93.5 GB | x | Due to the file size limitation, for F16 model, please use `cat` command to concatenate all parts into a single file. **You must concatenate these parts in order.** ## Others For Hugging Face version, please see: https://huggingface.co/hfl/chinese-mixtral-instruct Please refer to [https://github.com/ymcui/Chinese-Mixtral/](https://github.com/ymcui/Chinese-Mixtral/) for more details. ## Citation Please consider cite our paper if you use the resource of this repository. Paper link: https://arxiv.org/abs/2403.01851 ``` @article{chinese-mixtral, title={Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral}, author={Cui, Yiming and Yao, Xin}, journal={arXiv preprint arXiv:2403.01851}, url={https://arxiv.org/abs/2403.01851}, year={2024} } ```