--- license: apache-2.0 language: - zh - en pipeline_tag: image-text-to-text tags: - multimodal library_name: transformers base_model: - Qwen/Qwen2.5-VL-3B-Instruct --- # Qwen2.5-VL-3B-Instruct-GPTQ-Int4 This is an **UNOFFICIAL** GPTQ-Int4 quantized version of the `Qwen2.5-VL-3B-Instruct` model using `gptqmodel` library. The model is compatible with the latest `transformers` library (which can run non-quantized Qwen2.5-VL models). ### Performance | Model | Size (Disk) | ChartQA (test) | OCRBench | | ------------------------------------------------------------ | :---------: | :------------: | :------: | | [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) | 7.1 GB | 83.48 | 791 | | [Qwen2.5-VL-3B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct-AWQ) | 3.2 GB | 82.52 | 786 | | **Qwen2.5-VL-3B-Instruct-GPTQ-Int4** | 3.2 GB | 82.56 | 784 | | [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) | 16.0 GB | 83.2 | 846 | | [Qwen2.5-VL-7B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-AWQ) | 6.5 GB | 79.68 | 837 | | **Qwen2.5-VL-7B-Instruct-GPTQ-Int4** | 6.5 GB | 81.48 | 845 | #### Note - Evaluations are performed using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) with default setting. - GPTQ models are computationally more effective (fewer VRAM usage, faster inference speed) than AWQ series in these evaluations. ### Quick Tour Install the required libraries: ``` pip install git+https://github.com/huggingface/transformers accelerate qwen-vl-utils pip install gptqmodel tokenicer # optional ``` Sample code: ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "hfl/Qwen2.5-VL-3B-Instruct-GPTQ-Int4", attn_implementation="flash_attention_2", device_map="auto" ) processor = AutoProcessor.from_pretrained("hfl/Qwen2.5-VL-3B-Instruct-GPTQ-Int4") messages = [{ "role": "user", "content": [ {"type": "image", "image": "https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca-3/refs/heads/main/pics/banner.png"}, {"type": "text", "text": "请你描述一下这张图片。"}, ], }] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(output_text) ``` Results: ``` ['这张图片展示了一个中文和英文的标志,内容为“中文LLaMA & Alpaca大模型”和“Chinese LLaMA & Alpaca Large Language Models”。标志左侧有两个卡通形象,一个是红色围巾的羊驼,另一个是白色毛发的羊驼,背景是一个绿色的草地和一座红色屋顶的建筑。标志右侧有一个数字3,旁边有一些电路图案。整体设计简洁明了,使用了明亮的颜色和可爱的卡通形象来吸引注意力。'] ``` ### Disclaimer - **This is NOT an official model by Qwen. Use at your own risk.** - For detailed usage, please check [Qwen2.5-VL's page](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct).