Commit
·
b981bf9
1
Parent(s):
0644136
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: QA_using_DistilBERT_LORA_qv
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# QA_using_DistilBERT_LORA_qv
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.7782
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 64
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 2
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
49 |
+
| 4.7211 | 0.01 | 500 | 4.4152 |
|
50 |
+
| 4.3014 | 0.03 | 1000 | 4.3057 |
|
51 |
+
| 4.2235 | 0.04 | 1500 | 4.2254 |
|
52 |
+
| 4.1424 | 0.06 | 2000 | 4.1592 |
|
53 |
+
| 4.1312 | 0.07 | 2500 | 4.1091 |
|
54 |
+
| 4.033 | 0.09 | 3000 | 3.8720 |
|
55 |
+
| 3.739 | 0.1 | 3500 | 3.7028 |
|
56 |
+
| 3.6547 | 0.12 | 4000 | 3.5784 |
|
57 |
+
| 3.4915 | 0.13 | 4500 | 3.4967 |
|
58 |
+
| 3.5266 | 0.15 | 5000 | 3.4501 |
|
59 |
+
| 3.4602 | 0.16 | 5500 | 3.5048 |
|
60 |
+
| 3.4749 | 0.18 | 6000 | 3.3635 |
|
61 |
+
| 3.4088 | 0.19 | 6500 | 3.3465 |
|
62 |
+
| 3.3869 | 0.21 | 7000 | 3.3438 |
|
63 |
+
| 3.3835 | 0.22 | 7500 | 3.2838 |
|
64 |
+
| 3.2902 | 0.23 | 8000 | 3.3156 |
|
65 |
+
| 3.2747 | 0.25 | 8500 | 3.2770 |
|
66 |
+
| 3.2968 | 0.26 | 9000 | 3.2578 |
|
67 |
+
| 3.2305 | 0.28 | 9500 | 3.2645 |
|
68 |
+
| 3.2288 | 0.29 | 10000 | 3.1857 |
|
69 |
+
| 3.2717 | 0.31 | 10500 | 3.2326 |
|
70 |
+
| 3.1697 | 0.32 | 11000 | 3.2098 |
|
71 |
+
| 3.1786 | 0.34 | 11500 | 3.2656 |
|
72 |
+
| 3.2063 | 0.35 | 12000 | 3.1725 |
|
73 |
+
| 3.186 | 0.37 | 12500 | 3.1901 |
|
74 |
+
| 3.1389 | 0.38 | 13000 | 3.1706 |
|
75 |
+
| 3.234 | 0.4 | 13500 | 3.1553 |
|
76 |
+
| 3.1207 | 0.41 | 14000 | 3.1764 |
|
77 |
+
| 3.1764 | 0.42 | 14500 | 3.1441 |
|
78 |
+
| 3.1458 | 0.44 | 15000 | 3.1459 |
|
79 |
+
| 3.0631 | 0.45 | 15500 | 3.1461 |
|
80 |
+
| 3.1193 | 0.47 | 16000 | 3.1306 |
|
81 |
+
| 3.0437 | 0.48 | 16500 | 3.1775 |
|
82 |
+
| 3.1309 | 0.5 | 17000 | 3.0853 |
|
83 |
+
| 3.0448 | 0.51 | 17500 | 3.1136 |
|
84 |
+
| 3.0273 | 0.53 | 18000 | 3.0640 |
|
85 |
+
| 3.0826 | 0.54 | 18500 | 3.0786 |
|
86 |
+
| 3.0044 | 0.56 | 19000 | 3.0843 |
|
87 |
+
| 3.0672 | 0.57 | 19500 | 3.0516 |
|
88 |
+
| 3.0447 | 0.59 | 20000 | 3.0581 |
|
89 |
+
| 3.0168 | 0.6 | 20500 | 3.0369 |
|
90 |
+
| 2.9619 | 0.62 | 21000 | 3.0725 |
|
91 |
+
| 3.0981 | 0.63 | 21500 | 3.0389 |
|
92 |
+
| 3.0247 | 0.64 | 22000 | 3.0339 |
|
93 |
+
| 3.041 | 0.66 | 22500 | 3.0465 |
|
94 |
+
| 3.0286 | 0.67 | 23000 | 3.0806 |
|
95 |
+
| 3.0136 | 0.69 | 23500 | 3.0149 |
|
96 |
+
| 2.9814 | 0.7 | 24000 | 3.0128 |
|
97 |
+
| 3.0359 | 0.72 | 24500 | 3.0086 |
|
98 |
+
| 2.9939 | 0.73 | 25000 | 3.0216 |
|
99 |
+
| 2.996 | 0.75 | 25500 | 3.1415 |
|
100 |
+
| 2.9554 | 0.76 | 26000 | 3.0490 |
|
101 |
+
| 2.9773 | 0.78 | 26500 | 3.0457 |
|
102 |
+
| 2.9625 | 0.79 | 27000 | 2.9663 |
|
103 |
+
| 2.9184 | 0.81 | 27500 | 2.9981 |
|
104 |
+
| 2.9735 | 0.82 | 28000 | 3.0404 |
|
105 |
+
| 2.9567 | 0.84 | 28500 | 2.9621 |
|
106 |
+
| 2.9706 | 0.85 | 29000 | 3.0024 |
|
107 |
+
| 2.9436 | 0.86 | 29500 | 2.9535 |
|
108 |
+
| 2.9069 | 0.88 | 30000 | 2.9993 |
|
109 |
+
| 2.9652 | 0.89 | 30500 | 2.9393 |
|
110 |
+
| 2.9426 | 0.91 | 31000 | 2.9693 |
|
111 |
+
| 2.8936 | 0.92 | 31500 | 2.9111 |
|
112 |
+
| 2.9245 | 0.94 | 32000 | 2.9678 |
|
113 |
+
| 2.9054 | 0.95 | 32500 | 2.9263 |
|
114 |
+
| 2.8426 | 0.97 | 33000 | 2.9429 |
|
115 |
+
| 2.8782 | 0.98 | 33500 | 2.9232 |
|
116 |
+
| 2.8963 | 1.0 | 34000 | 2.9545 |
|
117 |
+
| 2.8757 | 1.01 | 34500 | 2.9181 |
|
118 |
+
| 2.853 | 1.03 | 35000 | 2.8925 |
|
119 |
+
| 2.8758 | 1.04 | 35500 | 2.9464 |
|
120 |
+
| 2.9179 | 1.06 | 36000 | 2.9076 |
|
121 |
+
| 2.8924 | 1.07 | 36500 | 2.8874 |
|
122 |
+
| 2.9488 | 1.08 | 37000 | 2.9284 |
|
123 |
+
| 2.8746 | 1.1 | 37500 | 2.9012 |
|
124 |
+
| 2.8026 | 1.11 | 38000 | 2.8679 |
|
125 |
+
| 2.8177 | 1.13 | 38500 | 2.9000 |
|
126 |
+
| 2.8113 | 1.14 | 39000 | 2.9069 |
|
127 |
+
| 2.8047 | 1.16 | 39500 | 2.8755 |
|
128 |
+
| 2.8437 | 1.17 | 40000 | 2.9043 |
|
129 |
+
| 2.8093 | 1.19 | 40500 | 2.8915 |
|
130 |
+
| 2.7881 | 1.2 | 41000 | 2.8665 |
|
131 |
+
| 2.8251 | 1.22 | 41500 | 2.8516 |
|
132 |
+
| 2.8356 | 1.23 | 42000 | 2.8927 |
|
133 |
+
| 2.7805 | 1.25 | 42500 | 2.8759 |
|
134 |
+
| 2.8944 | 1.26 | 43000 | 2.8491 |
|
135 |
+
| 2.88 | 1.27 | 43500 | 2.8458 |
|
136 |
+
| 2.8109 | 1.29 | 44000 | 2.8613 |
|
137 |
+
| 2.7595 | 1.3 | 44500 | 2.8734 |
|
138 |
+
| 2.8038 | 1.32 | 45000 | 2.8344 |
|
139 |
+
| 2.8113 | 1.33 | 45500 | 2.8448 |
|
140 |
+
| 2.8396 | 1.35 | 46000 | 2.8216 |
|
141 |
+
| 2.833 | 1.36 | 46500 | 2.8445 |
|
142 |
+
| 2.7711 | 1.38 | 47000 | 2.8499 |
|
143 |
+
| 2.7933 | 1.39 | 47500 | 2.8649 |
|
144 |
+
| 2.8079 | 1.41 | 48000 | 2.8390 |
|
145 |
+
| 2.781 | 1.42 | 48500 | 2.7999 |
|
146 |
+
| 2.8195 | 1.44 | 49000 | 2.8320 |
|
147 |
+
| 2.7553 | 1.45 | 49500 | 2.8500 |
|
148 |
+
| 2.7769 | 1.47 | 50000 | 2.8364 |
|
149 |
+
| 2.6745 | 1.48 | 50500 | 2.8392 |
|
150 |
+
| 2.7891 | 1.49 | 51000 | 2.8166 |
|
151 |
+
| 2.7691 | 1.51 | 51500 | 2.8195 |
|
152 |
+
| 2.7744 | 1.52 | 52000 | 2.8505 |
|
153 |
+
| 2.739 | 1.54 | 52500 | 2.8055 |
|
154 |
+
| 2.7843 | 1.55 | 53000 | 2.8633 |
|
155 |
+
| 2.7072 | 1.57 | 53500 | 2.8214 |
|
156 |
+
| 2.7658 | 1.58 | 54000 | 2.8178 |
|
157 |
+
| 2.7271 | 1.6 | 54500 | 2.8075 |
|
158 |
+
| 2.8387 | 1.61 | 55000 | 2.8025 |
|
159 |
+
| 2.7425 | 1.63 | 55500 | 2.8061 |
|
160 |
+
| 2.7464 | 1.64 | 56000 | 2.7882 |
|
161 |
+
| 2.7442 | 1.66 | 56500 | 2.8161 |
|
162 |
+
| 2.7398 | 1.67 | 57000 | 2.8091 |
|
163 |
+
| 2.7081 | 1.69 | 57500 | 2.8166 |
|
164 |
+
| 2.759 | 1.7 | 58000 | 2.8014 |
|
165 |
+
| 2.6873 | 1.71 | 58500 | 2.7949 |
|
166 |
+
| 2.8057 | 1.73 | 59000 | 2.8044 |
|
167 |
+
| 2.8156 | 1.74 | 59500 | 2.7860 |
|
168 |
+
| 2.6884 | 1.76 | 60000 | 2.7931 |
|
169 |
+
| 2.7627 | 1.77 | 60500 | 2.7931 |
|
170 |
+
| 2.6991 | 1.79 | 61000 | 2.7895 |
|
171 |
+
| 2.8059 | 1.8 | 61500 | 2.7981 |
|
172 |
+
| 2.7018 | 1.82 | 62000 | 2.7972 |
|
173 |
+
| 2.7027 | 1.83 | 62500 | 2.7956 |
|
174 |
+
| 2.7658 | 1.85 | 63000 | 2.7949 |
|
175 |
+
| 2.7735 | 1.86 | 63500 | 2.7803 |
|
176 |
+
| 2.6972 | 1.88 | 64000 | 2.7894 |
|
177 |
+
| 2.6512 | 1.89 | 64500 | 2.8087 |
|
178 |
+
| 2.6856 | 1.9 | 65000 | 2.7795 |
|
179 |
+
| 2.7292 | 1.92 | 65500 | 2.7772 |
|
180 |
+
| 2.7744 | 1.93 | 66000 | 2.7821 |
|
181 |
+
| 2.8022 | 1.95 | 66500 | 2.7858 |
|
182 |
+
| 2.7054 | 1.96 | 67000 | 2.7816 |
|
183 |
+
| 2.7255 | 1.98 | 67500 | 2.7740 |
|
184 |
+
| 2.6243 | 1.99 | 68000 | 2.7782 |
|
185 |
+
|
186 |
+
|
187 |
+
### Framework versions
|
188 |
+
|
189 |
+
- Transformers 4.35.2
|
190 |
+
- Pytorch 2.1.0+cu118
|
191 |
+
- Datasets 2.15.0
|
192 |
+
- Tokenizers 0.15.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1189496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c561e6807dd849d6aa43904415d6c3055136cf7a3b1f0b69d2cbad886729275b
|
3 |
size 1189496
|
runs/Nov28_01-56-56_c481cd1ed10b/events.out.tfevents.1701136658.c481cd1ed10b.891.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788f2b76a00f39c9f3fe79a343f9ef806416ff11eb01a79f2c00e92a19100779
|
3 |
+
size 42528
|