hassan4830 commited on
Commit
425b9a7
·
1 Parent(s): 8eff4b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -10
README.md CHANGED
@@ -27,12 +27,9 @@ You can use this model directly with a pipeline for masked language modeling:
27
  ```python
28
 
29
  >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
30
- >>> from transformers import TextClassificationPipeline
31
  >>> tokenizer = AutoTokenizer.from_pretrained("hassan4830/xlm-roberta-base-finetuned-urdu")
32
  >>> model = AutoModelForSequenceClassification.from_pretrained("hassan4830/xlm-roberta-base-finetuned-urdu")
33
- >>> text = "وہ ایک برا شخص ہے"
34
- >>> pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device = 0)
35
- >>> pipe(text)
36
 
37
  [{'sequence': "[CLS] hello i'm a role model. [SEP]",
38
  'score': 0.05292855575680733,
@@ -59,12 +56,11 @@ You can use this model directly with a pipeline for masked language modeling:
59
  Here is how to use this model to get the features of a given text in PyTorch:
60
 
61
  ```python
62
- from transformers import DistilBertTokenizer, DistilBertModel
63
- tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
64
- model = DistilBertModel.from_pretrained("distilbert-base-uncased")
65
- text = "Replace me by any text you'd like."
66
- encoded_input = tokenizer(text, return_tensors='pt')
67
- output = model(**encoded_input)
68
  ```
69
 
70
  and in TensorFlow:
 
27
  ```python
28
 
29
  >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
30
+
31
  >>> tokenizer = AutoTokenizer.from_pretrained("hassan4830/xlm-roberta-base-finetuned-urdu")
32
  >>> model = AutoModelForSequenceClassification.from_pretrained("hassan4830/xlm-roberta-base-finetuned-urdu")
 
 
 
33
 
34
  [{'sequence': "[CLS] hello i'm a role model. [SEP]",
35
  'score': 0.05292855575680733,
 
56
  Here is how to use this model to get the features of a given text in PyTorch:
57
 
58
  ```python
59
+ >>> from transformers import TextClassificationPipeline
60
+ >>> text = "وہ ایک برا شخص ہے"
61
+ >>> pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device = 0)
62
+ >>> pipe(text)
63
+
 
64
  ```
65
 
66
  and in TensorFlow: