harshithan commited on
Commit
313fd0a
Β·
verified Β·
1 Parent(s): 622910f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -1
README.md CHANGED
@@ -33,4 +33,59 @@ model-index:
33
  value: 0.8979
34
  library_name: transformers
35
  pipeline_tag: text-classification
36
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  value: 0.8979
34
  library_name: transformers
35
  pipeline_tag: text-classification
36
+ ---
37
+ # Facebook Post Classifier (RoBERTa Base, fine-tuned)
38
+
39
+ This model classifies short Facebook posts into **one** of the following **three mutually exclusive categories**:
40
+ - `Appreciation`
41
+ - `Complaint`
42
+ - `Feedback`
43
+
44
+ It is fine-tuned on ~8k manually labeled posts from business pages (e.g. Target, Walmart), based on the `cardiffnlp/twitter-roberta-base` model, which is pretrained on 58M tweets.
45
+
46
+ ## 🧠 Intended Use
47
+
48
+ - Customer support automation
49
+ - Sentiment analysis on social media
50
+ - CRM pipelines or chatbot classification
51
+
52
+ ## πŸ“Š Performance
53
+
54
+ | Class | Precision | Recall | F1 Score |
55
+ |--------------|-----------|--------|----------|
56
+ | Appreciation | 0.906 | 0.936 | 0.921 |
57
+ | Complaint | 0.931 | 0.902 | 0.916 |
58
+ | Feedback | 0.840 | 0.874 | 0.857 |
59
+ | **Average** | – | – | **0.898** |
60
+
61
+ > Evaluated on 2039 unseen posts with held-out labels using macro-averaged F1.
62
+
63
+ ## πŸ› οΈ How to Use
64
+
65
+ ```python
66
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
67
+ from torch.nn.functional import softmax
68
+ import torch
69
+
70
+ model = AutoModelForSequenceClassification.from_pretrained("your-username/fb-post-classifier-roberta")
71
+ tokenizer = AutoTokenizer.from_pretrained("your-username/fb-post-classifier-roberta")
72
+
73
+ inputs = tokenizer("I love the fast delivery!", return_tensors="pt")
74
+ outputs = model(**inputs)
75
+ probs = softmax(outputs.logits, dim=1)
76
+
77
+ label = torch.argmax(probs).item()
78
+ classes = ["Appreciation", "Complaint", "Feedback"]
79
+ print("Predicted:", classes[label])
80
+ ```
81
+
82
+ ## 🧾 License
83
+ MIT License
84
+
85
+ ## πŸ™‹β€β™€οΈ Author
86
+ This model was fine-tuned by @harshithan.
87
+
88
+ ## πŸ“š Academic Disclaimer
89
+ This model was developed as part of an academic experimentation project. It is intended solely for educational and research purposes.
90
+ The model has not been validated for production use and may not generalize to real-world Facebook or customer support data beyond the scope of the assignment.
91
+