--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DistillBERT-Political-Finetune results: [] --- # DistillBERT-Political-Finetune This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3916 - Accuracy: 0.8380 - F1: 0.8287 - Precision: 0.8410 - Recall: 0.8195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5547 | 1.0 | 3845 | 0.3916 | 0.8380 | 0.8287 | 0.8410 | 0.8195 | | 0.5061 | 2.0 | 7690 | 0.4957 | 0.8523 | 0.8409 | 0.8550 | 0.8309 | | 0.1709 | 3.0 | 11535 | 0.5732 | 0.8575 | 0.8449 | 0.8541 | 0.8376 | | 0.0965 | 4.0 | 15380 | 0.6933 | 0.8559 | 0.8438 | 0.8478 | 0.8406 | | 0.063 | 5.0 | 19225 | 0.8462 | 0.8583 | 0.8444 | 0.8456 | 0.8433 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1