harheem commited on
Commit
ee1fedc
·
verified ·
1 Parent(s): 0bba3f0

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,786 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - dataset_size:1K<n<10K
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: 하이브리다이저란 무엇인가요?
33
+ sentences:
34
+ - 하이퍼바이저는 보안에서 어떤 역할을 합니까?
35
+ - 지난 몇 년간 CUDA 생태계는 어떻게 발전해 왔나요?
36
+ - 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
37
+ - source_sentence: 임시 구독의 용도는 무엇입니까?
38
+ sentences:
39
+ - 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
40
+ - CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
41
+ - CUDA 8이 해결하는 계산상의 과제에는 어떤 것이 있습니까?
42
+ - source_sentence: '''saxpy''는 무엇을 뜻하나요?'
43
+ sentences:
44
+ - CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
45
+ - Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
46
+ - 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
47
+ - source_sentence: USD/Hydra란 무엇인가요?
48
+ sentences:
49
+ - 쿠다란 무엇인가요?
50
+ - y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
51
+ - Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
52
+ - source_sentence: CUDAcast란 무엇인가요?
53
+ sentences:
54
+ - CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
55
+ - 이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?
56
+ - WSL 2에서 NVML의 목적은 무엇입니까?
57
+ model-index:
58
+ - name: BGE base Financial Matryoshka
59
+ results:
60
+ - task:
61
+ type: information-retrieval
62
+ name: Information Retrieval
63
+ dataset:
64
+ name: dim 768
65
+ type: dim_768
66
+ metrics:
67
+ - type: cosine_accuracy@1
68
+ value: 0.5443037974683544
69
+ name: Cosine Accuracy@1
70
+ - type: cosine_accuracy@3
71
+ value: 0.7749648382559775
72
+ name: Cosine Accuracy@3
73
+ - type: cosine_accuracy@5
74
+ value: 0.8523206751054853
75
+ name: Cosine Accuracy@5
76
+ - type: cosine_accuracy@10
77
+ value: 0.9409282700421941
78
+ name: Cosine Accuracy@10
79
+ - type: cosine_precision@1
80
+ value: 0.5443037974683544
81
+ name: Cosine Precision@1
82
+ - type: cosine_precision@3
83
+ value: 0.2583216127519925
84
+ name: Cosine Precision@3
85
+ - type: cosine_precision@5
86
+ value: 0.17046413502109703
87
+ name: Cosine Precision@5
88
+ - type: cosine_precision@10
89
+ value: 0.09409282700421939
90
+ name: Cosine Precision@10
91
+ - type: cosine_recall@1
92
+ value: 0.5443037974683544
93
+ name: Cosine Recall@1
94
+ - type: cosine_recall@3
95
+ value: 0.7749648382559775
96
+ name: Cosine Recall@3
97
+ - type: cosine_recall@5
98
+ value: 0.8523206751054853
99
+ name: Cosine Recall@5
100
+ - type: cosine_recall@10
101
+ value: 0.9409282700421941
102
+ name: Cosine Recall@10
103
+ - type: cosine_ndcg@10
104
+ value: 0.7411108924386547
105
+ name: Cosine Ndcg@10
106
+ - type: cosine_mrr@10
107
+ value: 0.677065054807671
108
+ name: Cosine Mrr@10
109
+ - type: cosine_map@100
110
+ value: 0.6802131506478553
111
+ name: Cosine Map@100
112
+ - task:
113
+ type: information-retrieval
114
+ name: Information Retrieval
115
+ dataset:
116
+ name: dim 512
117
+ type: dim_512
118
+ metrics:
119
+ - type: cosine_accuracy@1
120
+ value: 0.5386779184247539
121
+ name: Cosine Accuracy@1
122
+ - type: cosine_accuracy@3
123
+ value: 0.7749648382559775
124
+ name: Cosine Accuracy@3
125
+ - type: cosine_accuracy@5
126
+ value: 0.8593530239099859
127
+ name: Cosine Accuracy@5
128
+ - type: cosine_accuracy@10
129
+ value: 0.9451476793248945
130
+ name: Cosine Accuracy@10
131
+ - type: cosine_precision@1
132
+ value: 0.5386779184247539
133
+ name: Cosine Precision@1
134
+ - type: cosine_precision@3
135
+ value: 0.2583216127519925
136
+ name: Cosine Precision@3
137
+ - type: cosine_precision@5
138
+ value: 0.17187060478199717
139
+ name: Cosine Precision@5
140
+ - type: cosine_precision@10
141
+ value: 0.09451476793248943
142
+ name: Cosine Precision@10
143
+ - type: cosine_recall@1
144
+ value: 0.5386779184247539
145
+ name: Cosine Recall@1
146
+ - type: cosine_recall@3
147
+ value: 0.7749648382559775
148
+ name: Cosine Recall@3
149
+ - type: cosine_recall@5
150
+ value: 0.8593530239099859
151
+ name: Cosine Recall@5
152
+ - type: cosine_recall@10
153
+ value: 0.9451476793248945
154
+ name: Cosine Recall@10
155
+ - type: cosine_ndcg@10
156
+ value: 0.7413571133247474
157
+ name: Cosine Ndcg@10
158
+ - type: cosine_mrr@10
159
+ value: 0.6759917844306029
160
+ name: Cosine Mrr@10
161
+ - type: cosine_map@100
162
+ value: 0.678939165210132
163
+ name: Cosine Map@100
164
+ - task:
165
+ type: information-retrieval
166
+ name: Information Retrieval
167
+ dataset:
168
+ name: dim 256
169
+ type: dim_256
170
+ metrics:
171
+ - type: cosine_accuracy@1
172
+ value: 0.540084388185654
173
+ name: Cosine Accuracy@1
174
+ - type: cosine_accuracy@3
175
+ value: 0.7791842475386779
176
+ name: Cosine Accuracy@3
177
+ - type: cosine_accuracy@5
178
+ value: 0.8621659634317862
179
+ name: Cosine Accuracy@5
180
+ - type: cosine_accuracy@10
181
+ value: 0.9423347398030942
182
+ name: Cosine Accuracy@10
183
+ - type: cosine_precision@1
184
+ value: 0.540084388185654
185
+ name: Cosine Precision@1
186
+ - type: cosine_precision@3
187
+ value: 0.25972808251289264
188
+ name: Cosine Precision@3
189
+ - type: cosine_precision@5
190
+ value: 0.1724331926863572
191
+ name: Cosine Precision@5
192
+ - type: cosine_precision@10
193
+ value: 0.09423347398030943
194
+ name: Cosine Precision@10
195
+ - type: cosine_recall@1
196
+ value: 0.540084388185654
197
+ name: Cosine Recall@1
198
+ - type: cosine_recall@3
199
+ value: 0.7791842475386779
200
+ name: Cosine Recall@3
201
+ - type: cosine_recall@5
202
+ value: 0.8621659634317862
203
+ name: Cosine Recall@5
204
+ - type: cosine_recall@10
205
+ value: 0.9423347398030942
206
+ name: Cosine Recall@10
207
+ - type: cosine_ndcg@10
208
+ value: 0.7403981257690416
209
+ name: Cosine Ndcg@10
210
+ - type: cosine_mrr@10
211
+ value: 0.6756379344986938
212
+ name: Cosine Mrr@10
213
+ - type: cosine_map@100
214
+ value: 0.6787046866761269
215
+ name: Cosine Map@100
216
+ - task:
217
+ type: information-retrieval
218
+ name: Information Retrieval
219
+ dataset:
220
+ name: dim 128
221
+ type: dim_128
222
+ metrics:
223
+ - type: cosine_accuracy@1
224
+ value: 0.5218002812939522
225
+ name: Cosine Accuracy@1
226
+ - type: cosine_accuracy@3
227
+ value: 0.7679324894514767
228
+ name: Cosine Accuracy@3
229
+ - type: cosine_accuracy@5
230
+ value: 0.8635724331926864
231
+ name: Cosine Accuracy@5
232
+ - type: cosine_accuracy@10
233
+ value: 0.9367088607594937
234
+ name: Cosine Accuracy@10
235
+ - type: cosine_precision@1
236
+ value: 0.5218002812939522
237
+ name: Cosine Precision@1
238
+ - type: cosine_precision@3
239
+ value: 0.2559774964838256
240
+ name: Cosine Precision@3
241
+ - type: cosine_precision@5
242
+ value: 0.17271448663853725
243
+ name: Cosine Precision@5
244
+ - type: cosine_precision@10
245
+ value: 0.09367088607594935
246
+ name: Cosine Precision@10
247
+ - type: cosine_recall@1
248
+ value: 0.5218002812939522
249
+ name: Cosine Recall@1
250
+ - type: cosine_recall@3
251
+ value: 0.7679324894514767
252
+ name: Cosine Recall@3
253
+ - type: cosine_recall@5
254
+ value: 0.8635724331926864
255
+ name: Cosine Recall@5
256
+ - type: cosine_recall@10
257
+ value: 0.9367088607594937
258
+ name: Cosine Recall@10
259
+ - type: cosine_ndcg@10
260
+ value: 0.7305864977688176
261
+ name: Cosine Ndcg@10
262
+ - type: cosine_mrr@10
263
+ value: 0.6641673922264634
264
+ name: Cosine Mrr@10
265
+ - type: cosine_map@100
266
+ value: 0.6671648971944116
267
+ name: Cosine Map@100
268
+ - task:
269
+ type: information-retrieval
270
+ name: Information Retrieval
271
+ dataset:
272
+ name: dim 64
273
+ type: dim_64
274
+ metrics:
275
+ - type: cosine_accuracy@1
276
+ value: 0.509142053445851
277
+ name: Cosine Accuracy@1
278
+ - type: cosine_accuracy@3
279
+ value: 0.7426160337552743
280
+ name: Cosine Accuracy@3
281
+ - type: cosine_accuracy@5
282
+ value: 0.8284106891701828
283
+ name: Cosine Accuracy@5
284
+ - type: cosine_accuracy@10
285
+ value: 0.9310829817158931
286
+ name: Cosine Accuracy@10
287
+ - type: cosine_precision@1
288
+ value: 0.509142053445851
289
+ name: Cosine Precision@1
290
+ - type: cosine_precision@3
291
+ value: 0.24753867791842477
292
+ name: Cosine Precision@3
293
+ - type: cosine_precision@5
294
+ value: 0.16568213783403654
295
+ name: Cosine Precision@5
296
+ - type: cosine_precision@10
297
+ value: 0.09310829817158929
298
+ name: Cosine Precision@10
299
+ - type: cosine_recall@1
300
+ value: 0.509142053445851
301
+ name: Cosine Recall@1
302
+ - type: cosine_recall@3
303
+ value: 0.7426160337552743
304
+ name: Cosine Recall@3
305
+ - type: cosine_recall@5
306
+ value: 0.8284106891701828
307
+ name: Cosine Recall@5
308
+ - type: cosine_recall@10
309
+ value: 0.9310829817158931
310
+ name: Cosine Recall@10
311
+ - type: cosine_ndcg@10
312
+ value: 0.7135661304090457
313
+ name: Cosine Ndcg@10
314
+ - type: cosine_mrr@10
315
+ value: 0.6444829549259928
316
+ name: Cosine Mrr@10
317
+ - type: cosine_map@100
318
+ value: 0.6474431148702396
319
+ name: Cosine Map@100
320
+ ---
321
+
322
+ # BGE base Financial Matryoshka
323
+
324
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
325
+
326
+ ## Model Details
327
+
328
+ ### Model Description
329
+ - **Model Type:** Sentence Transformer
330
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
331
+ - **Maximum Sequence Length:** 8192 tokens
332
+ - **Output Dimensionality:** 1024 tokens
333
+ - **Similarity Function:** Cosine Similarity
334
+ <!-- - **Training Dataset:** Unknown -->
335
+ - **Language:** en
336
+ - **License:** apache-2.0
337
+
338
+ ### Model Sources
339
+
340
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
341
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
342
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
343
+
344
+ ### Full Model Architecture
345
+
346
+ ```
347
+ SentenceTransformer(
348
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
349
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
350
+ (2): Normalize()
351
+ )
352
+ ```
353
+
354
+ ## Usage
355
+
356
+ ### Direct Usage (Sentence Transformers)
357
+
358
+ First install the Sentence Transformers library:
359
+
360
+ ```bash
361
+ pip install -U sentence-transformers
362
+ ```
363
+
364
+ Then you can load this model and run inference.
365
+ ```python
366
+ from sentence_transformers import SentenceTransformer
367
+
368
+ # Download from the 🤗 Hub
369
+ model = SentenceTransformer("sentence_transformers_model_id")
370
+ # Run inference
371
+ sentences = [
372
+ 'CUDAcast란 무엇인가요?',
373
+ 'CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?',
374
+ '이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?',
375
+ ]
376
+ embeddings = model.encode(sentences)
377
+ print(embeddings.shape)
378
+ # [3, 1024]
379
+
380
+ # Get the similarity scores for the embeddings
381
+ similarities = model.similarity(embeddings, embeddings)
382
+ print(similarities.shape)
383
+ # [3, 3]
384
+ ```
385
+
386
+ <!--
387
+ ### Direct Usage (Transformers)
388
+
389
+ <details><summary>Click to see the direct usage in Transformers</summary>
390
+
391
+ </details>
392
+ -->
393
+
394
+ <!--
395
+ ### Downstream Usage (Sentence Transformers)
396
+
397
+ You can finetune this model on your own dataset.
398
+
399
+ <details><summary>Click to expand</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Out-of-Scope Use
406
+
407
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
408
+ -->
409
+
410
+ ## Evaluation
411
+
412
+ ### Metrics
413
+
414
+ #### Information Retrieval
415
+ * Dataset: `dim_768`
416
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
417
+
418
+ | Metric | Value |
419
+ |:--------------------|:-----------|
420
+ | cosine_accuracy@1 | 0.5443 |
421
+ | cosine_accuracy@3 | 0.775 |
422
+ | cosine_accuracy@5 | 0.8523 |
423
+ | cosine_accuracy@10 | 0.9409 |
424
+ | cosine_precision@1 | 0.5443 |
425
+ | cosine_precision@3 | 0.2583 |
426
+ | cosine_precision@5 | 0.1705 |
427
+ | cosine_precision@10 | 0.0941 |
428
+ | cosine_recall@1 | 0.5443 |
429
+ | cosine_recall@3 | 0.775 |
430
+ | cosine_recall@5 | 0.8523 |
431
+ | cosine_recall@10 | 0.9409 |
432
+ | cosine_ndcg@10 | 0.7411 |
433
+ | cosine_mrr@10 | 0.6771 |
434
+ | **cosine_map@100** | **0.6802** |
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_512`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.5387 |
443
+ | cosine_accuracy@3 | 0.775 |
444
+ | cosine_accuracy@5 | 0.8594 |
445
+ | cosine_accuracy@10 | 0.9451 |
446
+ | cosine_precision@1 | 0.5387 |
447
+ | cosine_precision@3 | 0.2583 |
448
+ | cosine_precision@5 | 0.1719 |
449
+ | cosine_precision@10 | 0.0945 |
450
+ | cosine_recall@1 | 0.5387 |
451
+ | cosine_recall@3 | 0.775 |
452
+ | cosine_recall@5 | 0.8594 |
453
+ | cosine_recall@10 | 0.9451 |
454
+ | cosine_ndcg@10 | 0.7414 |
455
+ | cosine_mrr@10 | 0.676 |
456
+ | **cosine_map@100** | **0.6789** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_256`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.5401 |
465
+ | cosine_accuracy@3 | 0.7792 |
466
+ | cosine_accuracy@5 | 0.8622 |
467
+ | cosine_accuracy@10 | 0.9423 |
468
+ | cosine_precision@1 | 0.5401 |
469
+ | cosine_precision@3 | 0.2597 |
470
+ | cosine_precision@5 | 0.1724 |
471
+ | cosine_precision@10 | 0.0942 |
472
+ | cosine_recall@1 | 0.5401 |
473
+ | cosine_recall@3 | 0.7792 |
474
+ | cosine_recall@5 | 0.8622 |
475
+ | cosine_recall@10 | 0.9423 |
476
+ | cosine_ndcg@10 | 0.7404 |
477
+ | cosine_mrr@10 | 0.6756 |
478
+ | **cosine_map@100** | **0.6787** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_128`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.5218 |
487
+ | cosine_accuracy@3 | 0.7679 |
488
+ | cosine_accuracy@5 | 0.8636 |
489
+ | cosine_accuracy@10 | 0.9367 |
490
+ | cosine_precision@1 | 0.5218 |
491
+ | cosine_precision@3 | 0.256 |
492
+ | cosine_precision@5 | 0.1727 |
493
+ | cosine_precision@10 | 0.0937 |
494
+ | cosine_recall@1 | 0.5218 |
495
+ | cosine_recall@3 | 0.7679 |
496
+ | cosine_recall@5 | 0.8636 |
497
+ | cosine_recall@10 | 0.9367 |
498
+ | cosine_ndcg@10 | 0.7306 |
499
+ | cosine_mrr@10 | 0.6642 |
500
+ | **cosine_map@100** | **0.6672** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_64`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.5091 |
509
+ | cosine_accuracy@3 | 0.7426 |
510
+ | cosine_accuracy@5 | 0.8284 |
511
+ | cosine_accuracy@10 | 0.9311 |
512
+ | cosine_precision@1 | 0.5091 |
513
+ | cosine_precision@3 | 0.2475 |
514
+ | cosine_precision@5 | 0.1657 |
515
+ | cosine_precision@10 | 0.0931 |
516
+ | cosine_recall@1 | 0.5091 |
517
+ | cosine_recall@3 | 0.7426 |
518
+ | cosine_recall@5 | 0.8284 |
519
+ | cosine_recall@10 | 0.9311 |
520
+ | cosine_ndcg@10 | 0.7136 |
521
+ | cosine_mrr@10 | 0.6445 |
522
+ | **cosine_map@100** | **0.6474** |
523
+
524
+ <!--
525
+ ## Bias, Risks and Limitations
526
+
527
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
528
+ -->
529
+
530
+ <!--
531
+ ### Recommendations
532
+
533
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
534
+ -->
535
+
536
+ ## Training Details
537
+
538
+ ### Training Dataset
539
+
540
+ #### Unnamed Dataset
541
+
542
+
543
+ * Size: 6,397 training samples
544
+ * Columns: <code>positive</code> and <code>anchor</code>
545
+ * Approximate statistics based on the first 1000 samples:
546
+ | | positive | anchor |
547
+ |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
548
+ | type | string | string |
549
+ | details | <ul><li>min: 11 tokens</li><li>mean: 48.46 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.0 tokens</li><li>max: 48 tokens</li></ul> |
550
+ * Samples:
551
+ | positive | anchor |
552
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
553
+ | <code>Warp-stride 및 block-stride 루프는 스레드 동작을 재구성하고 공유 메모리 액세스 패턴을 최적화하는 데 사용되었습니다.</code> | <code>코드에서 공유 메모리 액세스 패턴을 최적화하기 위해 어떤 유형의 루프가 사용되었습니까?</code> |
554
+ | <code>Nsight Compute의 규칙은 성능 병목 현상을 식별하기 위한 구조화된 프레임워크를 제공하고 최적화 프로세스를 간소화하기 위한 실행 가능한 통찰력을 제공합니다.</code> | <code>Nsight Compute의 맥락에서 규칙이 중요한 이유는 무엇입니까?</code> |
555
+ | <code>NVIDIA Nsight와 같은 도구의 가용성으로 인해 개발자가 단일 GPU에서 디버깅할 수 있게 되어 CUDA 개발 속도가 크게 향상되었습니다. CUDA 메모리 검사기는 메모리 액세스 문제를 식별하여 코드 품질을 향상시키는 데 도움이 됩니다.</code> | <code>디버깅 도구의 가용성이 CUDA 개발에 어떤 영향을 미쳤습니까?</code> |
556
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
557
+ ```json
558
+ {
559
+ "loss": "MultipleNegativesRankingLoss",
560
+ "matryoshka_dims": [
561
+ 768,
562
+ 512,
563
+ 256,
564
+ 128,
565
+ 64
566
+ ],
567
+ "matryoshka_weights": [
568
+ 1,
569
+ 1,
570
+ 1,
571
+ 1,
572
+ 1
573
+ ],
574
+ "n_dims_per_step": -1
575
+ }
576
+ ```
577
+
578
+ ### Training Hyperparameters
579
+ #### Non-Default Hyperparameters
580
+
581
+ - `eval_strategy`: epoch
582
+ - `per_device_train_batch_size`: 32
583
+ - `per_device_eval_batch_size`: 16
584
+ - `gradient_accumulation_steps`: 16
585
+ - `learning_rate`: 2e-05
586
+ - `lr_scheduler_type`: cosine
587
+ - `warmup_ratio`: 0.1
588
+ - `bf16`: True
589
+ - `tf32`: True
590
+ - `load_best_model_at_end`: True
591
+ - `optim`: adamw_torch_fused
592
+ - `batch_sampler`: no_duplicates
593
+
594
+ #### All Hyperparameters
595
+ <details><summary>Click to expand</summary>
596
+
597
+ - `overwrite_output_dir`: False
598
+ - `do_predict`: False
599
+ - `eval_strategy`: epoch
600
+ - `prediction_loss_only`: True
601
+ - `per_device_train_batch_size`: 32
602
+ - `per_device_eval_batch_size`: 16
603
+ - `per_gpu_train_batch_size`: None
604
+ - `per_gpu_eval_batch_size`: None
605
+ - `gradient_accumulation_steps`: 16
606
+ - `eval_accumulation_steps`: None
607
+ - `learning_rate`: 2e-05
608
+ - `weight_decay`: 0.0
609
+ - `adam_beta1`: 0.9
610
+ - `adam_beta2`: 0.999
611
+ - `adam_epsilon`: 1e-08
612
+ - `max_grad_norm`: 1.0
613
+ - `num_train_epochs`: 3
614
+ - `max_steps`: -1
615
+ - `lr_scheduler_type`: cosine
616
+ - `lr_scheduler_kwargs`: {}
617
+ - `warmup_ratio`: 0.1
618
+ - `warmup_steps`: 0
619
+ - `log_level`: passive
620
+ - `log_level_replica`: warning
621
+ - `log_on_each_node`: True
622
+ - `logging_nan_inf_filter`: True
623
+ - `save_safetensors`: True
624
+ - `save_on_each_node`: False
625
+ - `save_only_model`: False
626
+ - `restore_callback_states_from_checkpoint`: False
627
+ - `no_cuda`: False
628
+ - `use_cpu`: False
629
+ - `use_mps_device`: False
630
+ - `seed`: 42
631
+ - `data_seed`: None
632
+ - `jit_mode_eval`: False
633
+ - `use_ipex`: False
634
+ - `bf16`: True
635
+ - `fp16`: False
636
+ - `fp16_opt_level`: O1
637
+ - `half_precision_backend`: auto
638
+ - `bf16_full_eval`: False
639
+ - `fp16_full_eval`: False
640
+ - `tf32`: True
641
+ - `local_rank`: 0
642
+ - `ddp_backend`: None
643
+ - `tpu_num_cores`: None
644
+ - `tpu_metrics_debug`: False
645
+ - `debug`: []
646
+ - `dataloader_drop_last`: False
647
+ - `dataloader_num_workers`: 0
648
+ - `dataloader_prefetch_factor`: None
649
+ - `past_index`: -1
650
+ - `disable_tqdm`: False
651
+ - `remove_unused_columns`: True
652
+ - `label_names`: None
653
+ - `load_best_model_at_end`: True
654
+ - `ignore_data_skip`: False
655
+ - `fsdp`: []
656
+ - `fsdp_min_num_params`: 0
657
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
658
+ - `fsdp_transformer_layer_cls_to_wrap`: None
659
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
660
+ - `deepspeed`: None
661
+ - `label_smoothing_factor`: 0.0
662
+ - `optim`: adamw_torch_fused
663
+ - `optim_args`: None
664
+ - `adafactor`: False
665
+ - `group_by_length`: False
666
+ - `length_column_name`: length
667
+ - `ddp_find_unused_parameters`: None
668
+ - `ddp_bucket_cap_mb`: None
669
+ - `ddp_broadcast_buffers`: False
670
+ - `dataloader_pin_memory`: True
671
+ - `dataloader_persistent_workers`: False
672
+ - `skip_memory_metrics`: True
673
+ - `use_legacy_prediction_loop`: False
674
+ - `push_to_hub`: False
675
+ - `resume_from_checkpoint`: None
676
+ - `hub_model_id`: None
677
+ - `hub_strategy`: every_save
678
+ - `hub_private_repo`: False
679
+ - `hub_always_push`: False
680
+ - `gradient_checkpointing`: False
681
+ - `gradient_checkpointing_kwargs`: None
682
+ - `include_inputs_for_metrics`: False
683
+ - `eval_do_concat_batches`: True
684
+ - `fp16_backend`: auto
685
+ - `push_to_hub_model_id`: None
686
+ - `push_to_hub_organization`: None
687
+ - `mp_parameters`:
688
+ - `auto_find_batch_size`: False
689
+ - `full_determinism`: False
690
+ - `torchdynamo`: None
691
+ - `ray_scope`: last
692
+ - `ddp_timeout`: 1800
693
+ - `torch_compile`: False
694
+ - `torch_compile_backend`: None
695
+ - `torch_compile_mode`: None
696
+ - `dispatch_batches`: None
697
+ - `split_batches`: None
698
+ - `include_tokens_per_second`: False
699
+ - `include_num_input_tokens_seen`: False
700
+ - `neftune_noise_alpha`: None
701
+ - `optim_target_modules`: None
702
+ - `batch_eval_metrics`: False
703
+ - `batch_sampler`: no_duplicates
704
+ - `multi_dataset_batch_sampler`: proportional
705
+
706
+ </details>
707
+
708
+ ### Training Logs
709
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
710
+ |:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
711
+ | 0.8 | 10 | 1.3103 | - | - | - | - | - |
712
+ | 0.96 | 12 | - | 0.6512 | 0.6539 | 0.6688 | 0.6172 | 0.6679 |
713
+ | 1.6 | 20 | 0.4148 | - | - | - | - | - |
714
+ | 2.0 | 25 | - | 0.6615 | 0.6688 | 0.6783 | 0.6417 | 0.6763 |
715
+ | 2.4 | 30 | 0.2683 | - | - | - | - | - |
716
+ | **2.88** | **36** | **-** | **0.6672** | **0.6787** | **0.6789** | **0.6474** | **0.6802** |
717
+
718
+ * The bold row denotes the saved checkpoint.
719
+
720
+ ### Framework Versions
721
+ - Python: 3.10.12
722
+ - Sentence Transformers: 3.0.0
723
+ - Transformers: 4.41.2
724
+ - PyTorch: 2.1.2+cu121
725
+ - Accelerate: 0.31.0
726
+ - Datasets: 2.18.0
727
+ - Tokenizers: 0.19.1
728
+
729
+ ## Citation
730
+
731
+ ### BibTeX
732
+
733
+ #### Sentence Transformers
734
+ ```bibtex
735
+ @inproceedings{reimers-2019-sentence-bert,
736
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
737
+ author = "Reimers, Nils and Gurevych, Iryna",
738
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
739
+ month = "11",
740
+ year = "2019",
741
+ publisher = "Association for Computational Linguistics",
742
+ url = "https://arxiv.org/abs/1908.10084",
743
+ }
744
+ ```
745
+
746
+ #### MatryoshkaLoss
747
+ ```bibtex
748
+ @misc{kusupati2024matryoshka,
749
+ title={Matryoshka Representation Learning},
750
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
751
+ year={2024},
752
+ eprint={2205.13147},
753
+ archivePrefix={arXiv},
754
+ primaryClass={cs.LG}
755
+ }
756
+ ```
757
+
758
+ #### MultipleNegativesRankingLoss
759
+ ```bibtex
760
+ @misc{henderson2017efficient,
761
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
762
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
763
+ year={2017},
764
+ eprint={1705.00652},
765
+ archivePrefix={arXiv},
766
+ primaryClass={cs.CL}
767
+ }
768
+ ```
769
+
770
+ <!--
771
+ ## Glossary
772
+
773
+ *Clearly define terms in order to be accessible across audiences.*
774
+ -->
775
+
776
+ <!--
777
+ ## Model Card Authors
778
+
779
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
780
+ -->
781
+
782
+ <!--
783
+ ## Model Card Contact
784
+
785
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
786
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cbc94fdf943692b8b8180fbe188459d1ffedb8c4d56fac95230df7a778c45cb
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f202436de7622733f700da9f93c1e602a5522cfe8e9d878dddc3d88bf451f1
3
+ size 5368