--- library_name: transformers license: apache-2.0 base_model: NewEden/MistralAI-Nemo-Instruct-ChatML tags: - axolotl - generated_from_trainer datasets: - hardlyworking/HardlyRP - jeiku/Writing model-index: - name: Sapphire-12B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: NewEden/MistralAI-Nemo-Instruct-ChatML model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: hardlyworking/HardlyRP type: chat_template chat_template: chatml roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: jeiku/Writing type: completion field: text shuffle_merged_datasets: true dataset_prepared_path: dataset_preparedss val_set_size: 0.0025 output_dir: 12b-out-0001-max_grad_norm hub_model_id: hardlyworking/Sapphire-12B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true max_grad_norm: 0.001 wandb_project: Sapphire wandb_entity: wandb_watch: wandb_name: Sapphire wandb_log_model: evals_per_epoch: 8 eval_table_size: eval_max_new_tokens: 128 gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 2e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_ratio: 0.05 saves_per_epoch: 1 debug: weight_decay: 0.0001 fsdp: fsdp_config: special_tokens: pad_token: ```

# Sapphire-12B This model is a fine-tuned version of [NewEden/MistralAI-Nemo-Instruct-ChatML](https://huggingface.co/NewEden/MistralAI-Nemo-Instruct-ChatML) on the hardlyworking/HardlyRP and the jeiku/Writing datasets. It achieves the following results on the evaluation set: - Loss: 1.6799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8932 | 0.0033 | 1 | 1.9155 | | 1.7729 | 0.1262 | 38 | 1.7802 | | 1.7163 | 0.2525 | 76 | 1.7111 | | 1.6484 | 0.3787 | 114 | 1.6970 | | 1.7006 | 0.5050 | 152 | 1.6907 | | 1.7276 | 0.6312 | 190 | 1.6874 | | 1.7042 | 0.7575 | 228 | 1.6847 | | 1.5575 | 0.8837 | 266 | 1.6825 | | 1.5451 | 1.0100 | 304 | 1.6816 | | 1.6592 | 1.1362 | 342 | 1.6807 | | 1.7344 | 1.2625 | 380 | 1.6805 | | 1.6953 | 1.3887 | 418 | 1.6798 | | 1.5799 | 1.5150 | 456 | 1.6799 | | 1.5241 | 1.6412 | 494 | 1.6799 | | 1.548 | 1.7674 | 532 | 1.6797 | | 1.6254 | 1.8937 | 570 | 1.6799 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1