--- library_name: transformers license: cc-by-nc-4.0 base_model: Salesforce/xgen-small-4B-instruct-r tags: - axolotl - generated_from_trainer datasets: - hardlyworking/HardlyRPv2 model-index: - name: HoldMy4B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0` ```yaml base_model: Salesforce/xgen-small-4B-instruct-r load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: hardlyworking/HardlyRPv2 type: chat_template split: train field_messages: conversations message_property_mappings: role: from content: value val_set_size: 0.1 output_dir: ./outputs/out dataset_prepared_path: last_run_prepared shuffle_merged_datasets: true hub_model_id: hardlyworking/HoldMy4B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: Xgen4B wandb_entity: wandb_watch: wandb_name: Xgen4B wandb_log_model: evals_per_epoch: 8 eval_table_size: eval_max_new_tokens: 128 gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: deepspeed: warmup_ratio: 0.05 saves_per_epoch: 1 debug: weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# HoldMy4B This model is a fine-tuned version of [Salesforce/xgen-small-4B-instruct-r](https://huggingface.co/Salesforce/xgen-small-4B-instruct-r) on the hardlyworking/HardlyRPv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 24 - training_steps: 480 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 2.6420 | | 2.0119 | 0.125 | 30 | 2.2105 | | 1.8963 | 0.25 | 60 | 2.1865 | | 1.8623 | 0.375 | 90 | 2.1787 | | 1.8528 | 0.5 | 120 | 2.1746 | | 1.8784 | 0.625 | 150 | 2.1706 | | 1.9961 | 0.75 | 180 | 2.1686 | | 1.8748 | 0.875 | 210 | 2.1672 | | 2.0385 | 1.0 | 240 | 2.1657 | | 1.9327 | 1.125 | 270 | 2.1646 | | 1.8509 | 1.25 | 300 | 2.1645 | | 1.8279 | 1.375 | 330 | 2.1640 | | 1.8271 | 1.5 | 360 | 2.1638 | | 1.8589 | 1.625 | 390 | 2.1637 | | 1.9824 | 1.75 | 420 | 2.1637 | | 1.8668 | 1.875 | 450 | 2.1637 | | 2.0332 | 2.0 | 480 | 2.1637 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1