--- library_name: transformers license: apache-2.0 base_model: GreenerPastures/Bald-Beaver-8B tags: - axolotl - generated_from_trainer datasets: - NewEden/Joe-Games model-index: - name: Games8B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: GreenerPastures/Bald-Beaver-8B load_in_8bit: false load_in_4bit: false strict: false chat_template: qwen3 datasets: - path: NewEden/Joe-Games type: completion val_set_size: 0.05 output_dir: ./outputs/out dataset_prepared_path: last_run_prepared shuffle_merged_datasets: true hub_model_id: hardlyworking/Games8B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: Qwen8B wandb_entity: wandb_watch: wandb_name: Qwen8B wandb_log_model: evals_per_epoch: 8 eval_table_size: eval_max_new_tokens: 128 max_grad_norm: 1.0 gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: deepspeed: warmup_ratio: 0.05 saves_per_epoch: 1 debug: weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# Games8B This model is a fine-tuned version of [GreenerPastures/Bald-Beaver-8B](https://huggingface.co/GreenerPastures/Bald-Beaver-8B) on the NewEden/Joe-Games dataset. It achieves the following results on the evaluation set: - Loss: 1.9796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 13 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6433 | 0.0074 | 1 | 2.0240 | | 1.5696 | 0.125 | 17 | 2.0077 | | 2.5862 | 0.25 | 34 | 1.9995 | | 1.9231 | 0.375 | 51 | 1.9944 | | 1.9655 | 0.5 | 68 | 1.9908 | | 1.6909 | 0.625 | 85 | 1.9880 | | 1.8634 | 0.75 | 102 | 1.9857 | | 1.6684 | 0.875 | 119 | 1.9832 | | 1.8727 | 1.0 | 136 | 1.9816 | | 1.542 | 1.125 | 153 | 1.9806 | | 2.5733 | 1.25 | 170 | 1.9801 | | 1.8934 | 1.375 | 187 | 1.9797 | | 1.9386 | 1.5 | 204 | 1.9796 | | 1.6764 | 1.625 | 221 | 1.9796 | | 1.8524 | 1.75 | 238 | 1.9796 | | 1.661 | 1.875 | 255 | 1.9795 | | 1.8697 | 2.0 | 272 | 1.9796 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1