--- library_name: transformers base_model: hardlyworking/Aura-12B tags: - axolotl - generated_from_trainer datasets: - hardlyworking/LighterRPSet - jeiku/Writing model-index: - name: Test12B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: hardlyworking/Aura-12B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: hardlyworking/LighterRPSet type: chat_template chat_template: chatml roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: jeiku/Writing type: completion field: text shuffle_merged_datasets: true dataset_prepared_path: val_set_size: 0.01 output_dir: ./output/out plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true hub_model_id: hardlyworking/Test12B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: Aura-12B wandb_entity: wandb_watch: wandb_name: Aura-12B wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true max_grad_norm: 0.01 warmup_ratio: 0.1 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: ```

# Test12B This model is a fine-tuned version of [hardlyworking/Aura-12B](https://huggingface.co/hardlyworking/Aura-12B) on the hardlyworking/LighterRPSet and the jeiku/Writing datasets. It achieves the following results on the evaluation set: - Loss: 2.2116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 41 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2984 | 0.0048 | 1 | 2.5678 | | 1.8777 | 0.5009 | 104 | 2.2361 | | 2.5154 | 1.0048 | 208 | 2.2155 | | 1.8757 | 1.5057 | 312 | 2.2116 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1