--- library_name: transformers license: cc-by-nc-4.0 base_model: hardlyworking/4Bcpt tags: - axolotl - generated_from_trainer datasets: - GreenerPastures/All-Your-Base-Full model-index: - name: 4Brp results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.11.0.dev0` ```yaml base_model: hardlyworking/4Bcpt load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: GreenerPastures/All-Your-Base-Full type: chat_template split: train field_messages: conversations message_property_mappings: role: from content: value val_set_size: 0.02 output_dir: ./outputs/out dataset_prepared_path: last_run_prepared shuffle_merged_datasets: true hub_model_id: hardlyworking/4Brp hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: New4B wandb_entity: wandb_watch: wandb_name: New4Brp wandb_log_model: evals_per_epoch: 8 eval_table_size: eval_max_new_tokens: 128 gradient_accumulation_steps: 2 micro_batch_size: 8 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: deepspeed: warmup_ratio: 0.05 saves_per_epoch: 1 debug: weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: <|endoftext|> ```

# 4Brp This model is a fine-tuned version of [hardlyworking/4Bcpt](https://huggingface.co/hardlyworking/4Bcpt) on the GreenerPastures/All-Your-Base-Full dataset. It achieves the following results on the evaluation set: - Loss: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 57 - training_steps: 1148 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0 | 0 | 1.1370 | | 1.0053 | 0.1253 | 72 | 0.9893 | | 0.9679 | 0.2507 | 144 | 0.9576 | | 0.966 | 0.3760 | 216 | 0.9440 | | 0.9397 | 0.5013 | 288 | 0.9358 | | 0.9563 | 0.6266 | 360 | 0.9300 | | 0.9034 | 0.7520 | 432 | 0.9259 | | 0.9214 | 0.8773 | 504 | 0.9230 | | 0.9155 | 1.0017 | 576 | 0.9211 | | 0.9072 | 1.1271 | 648 | 0.9198 | | 0.893 | 1.2524 | 720 | 0.9191 | | 0.91 | 1.3777 | 792 | 0.9186 | | 0.9649 | 1.5030 | 864 | 0.9184 | | 0.8838 | 1.6284 | 936 | 0.9183 | | 0.8856 | 1.7537 | 1008 | 0.9183 | | 0.9235 | 1.8790 | 1080 | 0.9183 | ### Framework versions - Transformers 4.53.1 - Pytorch 2.6.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2