End of training
Browse files
README.md
CHANGED
@@ -1,144 +1,68 @@
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
-
|
4 |
-
base_model: hardlyworking/4Brp
|
5 |
tags:
|
6 |
-
- axolotl
|
7 |
- generated_from_trainer
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
results: []
|
13 |
---
|
14 |
|
15 |
-
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
-
|
18 |
-
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
19 |
-
<details><summary>See axolotl config</summary>
|
20 |
-
|
21 |
-
axolotl version: `0.11.0.dev0`
|
22 |
-
```yaml
|
23 |
-
base_model: hardlyworking/4Brp
|
24 |
-
|
25 |
-
load_in_8bit: false
|
26 |
-
load_in_4bit: false
|
27 |
-
strict: false
|
28 |
-
|
29 |
-
datasets:
|
30 |
-
- path: PocketDoc/Dans-Prosemaxx-RepRemover-1
|
31 |
-
type: dan-chat-advanced
|
32 |
-
val_set_size: 0
|
33 |
-
output_dir: ./outputs/out
|
34 |
-
dataset_prepared_path: last_run_prepared
|
35 |
-
shuffle_merged_datasets: true
|
36 |
-
|
37 |
-
hub_model_id: hardlyworking/4Brepremover
|
38 |
-
hub_strategy: "all_checkpoints"
|
39 |
-
push_dataset_to_hub:
|
40 |
-
hf_use_auth_token: true
|
41 |
-
|
42 |
-
plugins:
|
43 |
-
- axolotl.integrations.liger.LigerPlugin
|
44 |
-
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
|
45 |
-
liger_rope: true
|
46 |
-
liger_rms_norm: true
|
47 |
-
liger_layer_norm: true
|
48 |
-
liger_glu_activation: true
|
49 |
-
liger_fused_linear_cross_entropy: false
|
50 |
-
cut_cross_entropy: true
|
51 |
-
|
52 |
-
sequence_len: 32768
|
53 |
-
sample_packing: true
|
54 |
-
eval_sample_packing: true
|
55 |
-
pad_to_sequence_len: true
|
56 |
-
|
57 |
-
wandb_project: new4B
|
58 |
-
wandb_entity:
|
59 |
-
wandb_watch:
|
60 |
-
wandb_name: new4Brep
|
61 |
-
wandb_log_model:
|
62 |
-
|
63 |
-
evals_per_epoch:
|
64 |
-
eval_table_size:
|
65 |
-
eval_max_new_tokens:
|
66 |
-
|
67 |
-
gradient_accumulation_steps: 1
|
68 |
-
micro_batch_size: 8
|
69 |
-
num_epochs: 3
|
70 |
-
optimizer: adamw_bnb_8bit
|
71 |
-
lr_scheduler: cosine
|
72 |
-
learning_rate: 1e-5
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
bf16: auto
|
77 |
-
fp16:
|
78 |
-
tf32: false
|
79 |
|
80 |
-
|
81 |
-
gradient_checkpointing_kwargs:
|
82 |
-
use_reentrant: false
|
83 |
-
early_stopping_patience:
|
84 |
-
resume_from_checkpoint:
|
85 |
-
local_rank:
|
86 |
-
logging_steps: 1
|
87 |
-
xformers_attention:
|
88 |
-
flash_attention: true
|
89 |
-
s2_attention:
|
90 |
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
fsdp:
|
98 |
-
fsdp_config:
|
99 |
-
special_tokens:
|
100 |
-
pad_token: <|endoftext|>
|
101 |
```
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
# 4Brepremover
|
106 |
-
|
107 |
-
This model is a fine-tuned version of [hardlyworking/4Brp](https://huggingface.co/hardlyworking/4Brp) on the PocketDoc/Dans-Prosemaxx-RepRemover-1 dataset.
|
108 |
-
|
109 |
-
## Model description
|
110 |
-
|
111 |
-
More information needed
|
112 |
-
|
113 |
-
## Intended uses & limitations
|
114 |
-
|
115 |
-
More information needed
|
116 |
-
|
117 |
-
## Training and evaluation data
|
118 |
|
119 |
-
|
120 |
|
121 |
-
## Training procedure
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
- learning_rate: 1e-05
|
127 |
-
- train_batch_size: 8
|
128 |
-
- eval_batch_size: 8
|
129 |
-
- seed: 42
|
130 |
-
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
131 |
-
- lr_scheduler_type: cosine
|
132 |
-
- lr_scheduler_warmup_steps: 8
|
133 |
-
- training_steps: 174
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: hardlyworking/4Brepremover
|
3 |
library_name: transformers
|
4 |
+
model_name: 4Bkto
|
|
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
+
- axolotl
|
8 |
+
- trl
|
9 |
+
- kto
|
10 |
+
licence: license
|
|
|
11 |
---
|
12 |
|
13 |
+
# Model Card for 4Bkto
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
This model is a fine-tuned version of [hardlyworking/4Brepremover](https://huggingface.co/hardlyworking/4Brepremover).
|
16 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
|
|
|
|
|
17 |
|
18 |
+
## Quick start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
```python
|
21 |
+
from transformers import pipeline
|
22 |
|
23 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
24 |
+
generator = pipeline("text-generation", model="hardlyworking/4Bkto", device="cuda")
|
25 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
26 |
+
print(output["generated_text"])
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
+
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/welchjacob254/New4B/runs/lw2hq72m)
|
32 |
|
|
|
33 |
|
34 |
+
This model was trained with KTO, a method introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306).
|
35 |
|
36 |
+
### Framework versions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
- TRL: 0.18.2
|
39 |
+
- Transformers: 4.53.1
|
40 |
+
- Pytorch: 2.6.0+cu126
|
41 |
+
- Datasets: 3.6.0
|
42 |
+
- Tokenizers: 0.21.2
|
43 |
|
44 |
+
## Citations
|
45 |
|
46 |
+
Cite KTO as:
|
47 |
|
48 |
+
```bibtex
|
49 |
+
@article{ethayarajh2024kto,
|
50 |
+
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
|
51 |
+
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
|
52 |
+
year = 2024,
|
53 |
+
eprint = {arXiv:2402.01306},
|
54 |
+
}
|
55 |
+
```
|
56 |
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|