--- library_name: peft license: gemma base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated tags: - axolotl - base_model:adapter:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated - lora - transformers datasets: - hardlyworking/HardlyRPv2-10k pipeline_tag: text-generation model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0.dev0` ```yaml base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true load_in_8bit: false load_in_4bit: true # for use with fft to only train on language model layers # unfrozen_parameters: # - model.language_model.* # - lm_head # - embed_tokens chat_template: gemma3n eot_tokens: - datasets: - path: hardlyworking/HardlyRPv2-10k type: chat_template split: train field_messages: conversations message_property_mappings: role: from content: value val_set_size: 0.0 output_dir: ./outputs/out adapter: qlora lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 # lora_target_linear: # Does not work with gemma3n currently lora_target_modules: - self_attn.q_proj - self_attn.k_proj - self_attn.v_proj - self_attn.o_proj - mlp.gate_proj - mlp.up_proj - mlp.down_proj sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 bf16: auto tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false unsloth: true resume_from_checkpoint: logging_steps: 1 # flash_attention: true # Any attention impl does not work with gemma3n now warmup_ratio: 0.1 evals_per_epoch: saves_per_epoch: 1 weight_decay: 0.0 special_tokens: ```

# outputs/out This model is a fine-tuned version of [huihui-ai/Huihui-gemma-3n-E4B-it-abliterated](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) on the hardlyworking/HardlyRPv2-10k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 13 - training_steps: 132 ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.55.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4