File size: 3,623 Bytes
78d5d6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
library_name: peft
license: gemma
base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated
tags:
- axolotl
- base_model:adapter:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated
- lora
- transformers
datasets:
- hardlyworking/HardlyRPv2-10k
pipeline_tag: text-generation
model-index:
- name: outputs/out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.12.0.dev0`
```yaml
base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: true
# for use with fft to only train on language model layers
# unfrozen_parameters:
# - model.language_model.*
# - lm_head
# - embed_tokens
chat_template: gemma3n
eot_tokens:
- <end_of_turn>
datasets:
- path: hardlyworking/HardlyRPv2-10k
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.0
output_dir: ./outputs/out
adapter: qlora
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
# lora_target_linear: # Does not work with gemma3n currently
lora_target_modules:
- self_attn.q_proj
- self_attn.k_proj
- self_attn.v_proj
- self_attn.o_proj
- mlp.gate_proj
- mlp.up_proj
- mlp.down_proj
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
unsloth: true
resume_from_checkpoint:
logging_steps: 1
# flash_attention: true # Any attention impl does not work with gemma3n now
warmup_ratio: 0.1
evals_per_epoch:
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
```
</details><br>
# outputs/out
This model is a fine-tuned version of [huihui-ai/Huihui-gemma-3n-E4B-it-abliterated](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) on the hardlyworking/HardlyRPv2-10k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- training_steps: 132
### Training results
### Framework versions
- PEFT 0.17.0
- Transformers 4.55.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4 |