File size: 3,623 Bytes
78d5d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: peft
license: gemma
base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated
tags:
- axolotl
- base_model:adapter:huihui-ai/Huihui-gemma-3n-E4B-it-abliterated
- lora
- transformers
datasets:
- hardlyworking/HardlyRPv2-10k
pipeline_tag: text-generation
model-index:
- name: outputs/out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.12.0.dev0`
```yaml
base_model: huihui-ai/Huihui-gemma-3n-E4B-it-abliterated

# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

load_in_8bit: false
load_in_4bit: true

# for use with fft to only train on language model layers
# unfrozen_parameters:
  # - model.language_model.*
  # - lm_head
  # - embed_tokens


chat_template: gemma3n
eot_tokens:
  - <end_of_turn>
datasets:
  - path: hardlyworking/HardlyRPv2-10k
    type: chat_template
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

val_set_size: 0.0
output_dir: ./outputs/out

adapter: qlora
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
# lora_target_linear: # Does not work with gemma3n currently
lora_target_modules:
  - self_attn.q_proj
  - self_attn.k_proj
  - self_attn.v_proj
  - self_attn.o_proj
  - mlp.gate_proj
  - mlp.up_proj
  - mlp.down_proj


sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
  unsloth: true
resume_from_checkpoint:
logging_steps: 1
# flash_attention: true  # Any attention impl does not work with gemma3n now

warmup_ratio: 0.1
evals_per_epoch:
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

```

</details><br>

# outputs/out

This model is a fine-tuned version of [huihui-ai/Huihui-gemma-3n-E4B-it-abliterated](https://huggingface.co/huihui-ai/Huihui-gemma-3n-E4B-it-abliterated) on the hardlyworking/HardlyRPv2-10k dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- training_steps: 132

### Training results



### Framework versions

- PEFT 0.17.0
- Transformers 4.55.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4