File size: 7,466 Bytes
f3a1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torch.nn as nn
from diffusers import AutoencoderOobleck
from diffusers import FluxTransformer2DModel
from tangoflux import TangoFluxInference
from tangoflux.model import DurationEmbedder, TangoFlux

def export_vae_encoder(vae, save_path, batch_size=1, audio_length=441000):
    """导出VAE编码器到ONNX格式
    
    Args:
        vae: AutoencoderOobleck实例
        save_path: 保存路径
        batch_size: batch大小
        audio_length: 音频长度(默认10秒,44100Hz采样率)
    """
    vae.eval()
    
    # 创建dummy input - 注意这里是双声道音频
    dummy_input = torch.randn(batch_size, 2, audio_length)
    
    # 创建一个包装类来处理forward调用
    class VAEEncoderWrapper(nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae
            
        def forward(self, audio):
            return self.vae.encode(audio).latent_dist.sample()
    
    wrapper = VAEEncoderWrapper(vae)
    
    # 导出encoder部分
    torch.onnx.export(
        wrapper,
        dummy_input,
        save_path,
        input_names=['audio'],
        output_names=['latent'],
        dynamic_axes={
            'audio': {0: 'batch_size', 2: 'audio_length'},
            'latent': {0: 'batch_size', 2: 'latent_length'}
        },
        opset_version=17
    )

def export_vae_decoder(vae, save_path, batch_size=1, latent_length=645):
    """导出VAE解码器到ONNX格式
    
    Args:
        vae: AutoencoderOobleck实例
        save_path: 保存路径
        batch_size: batch大小
        latent_length: 潜在向量长度
    """
    vae.eval()
    
    # 创建dummy input
    dummy_input = torch.randn(batch_size, 64, latent_length)
    
    # 创建一个包装类来处理forward调用
    class VAEDecoderWrapper(nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae
            
        def forward(self, latent):
            return self.vae.decode(latent).sample
    
    wrapper = VAEDecoderWrapper(vae)
    
    # 导出decoder部分
    torch.onnx.export(
        wrapper,
        dummy_input,
        save_path,
        input_names=['latent'],
        output_names=['audio'],
        dynamic_axes={
            'latent': {0: 'batch_size', 2: 'latent_length'},
            'audio': {0: 'batch_size', 2: 'audio_length'}
        },
        opset_version=17
    )

def export_duration_embedder(duration_embedder, save_path, batch_size=1):
    """导出Duration Embedder到ONNX格式
    
    Args:
        duration_embedder: DurationEmbedder实例
        save_path: 保存路径
        batch_size: batch大小
    """
    duration_embedder.eval()
    
    # 创建dummy input - 注意这里是标量值
    dummy_input = torch.tensor([[10.0]], dtype=torch.float32)  # 10秒
    
    # 导出
    torch.onnx.export(
        duration_embedder,
        dummy_input,
        save_path,
        input_names=['duration'],
        output_names=['embedding'],
        dynamic_axes={
            'duration': {0: 'batch_size'},
            'embedding': {0: 'batch_size'}
        },
        opset_version=17
    )

def export_flux_transformer(transformer, save_path, batch_size=1, seq_length=645):
    """导出FluxTransformer2D到ONNX格式
    
    Args:
        transformer: FluxTransformer2DModel实例
        save_path: 保存路径
        batch_size: batch大小
        seq_length: 序列长度
    """
    transformer.eval()
    
    # 创建dummy inputs - 注意所有输入的形状
    hidden_states = torch.randn(batch_size, seq_length, 64)  # [B, S, C]
    timestep = torch.tensor([0.5])  # [1]
    pooled_text = torch.randn(batch_size, 1024)  # [B, D]
    encoder_hidden_states = torch.randn(batch_size, 64, 1024)  # [B, L, D]
    txt_ids = torch.zeros(batch_size, 64, 3).to(torch.int64) # [B, L, 3]
    img_ids = torch.arange(seq_length).unsqueeze(0).unsqueeze(-1).repeat(batch_size, 1, 3).to(torch.int64)  # [B, S, 3]
    
    # 创建一个包装类来处理forward调用
    class TransformerWrapper(nn.Module):
        def __init__(self, transformer):
            super().__init__()
            self.transformer = transformer
            
        def forward(self, hidden_states, timestep, pooled_text, encoder_hidden_states, txt_ids, img_ids):
            return self.transformer(
                hidden_states=hidden_states,
                timestep=timestep,
                guidance=None,
                pooled_projections=pooled_text,
                encoder_hidden_states=encoder_hidden_states,
                txt_ids=txt_ids,
                img_ids=img_ids,
                return_dict=False
            )[0]
    
    wrapper = TransformerWrapper(transformer)
    
    # 导出
    torch.onnx.export(
        wrapper,
        (hidden_states, timestep, pooled_text, encoder_hidden_states, txt_ids, img_ids),
        save_path,
        input_names=['hidden_states', 'timestep', 'pooled_text', 'encoder_hidden_states', 'txt_ids', 'img_ids'],
        output_names=['output'],
        dynamic_axes={
            'hidden_states': {0: 'batch_size', 1: 'sequence_length'},
            'pooled_text': {0: 'batch_size'},
            'encoder_hidden_states': {0: 'batch_size', 1: 'text_length'},
            'txt_ids': {0: 'batch_size', 1: 'text_length'},
            'img_ids': {0: 'batch_size', 1: 'sequence_length'}
        },
        opset_version=17
    )

def export_proj_layer(proj_layer, save_path, batch_size=1):
    """导出projection层到ONNX格式
    
    Args:
        proj_layer: 投影层(fc层)实例
        save_path: 保存路径
        batch_size: batch大小
    """
    proj_layer.eval()
    
    # 创建dummy input - 使用T5的hidden size
    dummy_input = torch.randn(batch_size, 1024)  # T5-large hidden size
    
    # 导出
    torch.onnx.export(
        proj_layer,
        dummy_input,
        save_path,
        input_names=['text_embedding'],
        output_names=['projected'],
        dynamic_axes={
            'text_embedding': {0: 'batch_size'},
            'projected': {0: 'batch_size'}
        },
        opset_version=17
    )

def export_all(model_path, output_dir):
    """导出所有组件到ONNX格式
    
    Args:
        model_path: TangoFlux模型路径
        output_dir: 输出目录
    """
    import os
    
    # 加载模型
    model = TangoFluxInference(name=model_path, device="cpu")
    
    # 创建输出目录
    os.makedirs(output_dir, exist_ok=True)
    
    # 导出VAE
    export_vae_encoder(model.vae, f"{output_dir}/vae_encoder.onnx")
    export_vae_decoder(model.vae, f"{output_dir}/vae_decoder.onnx")
    
    # 导出Duration Embedder
    export_duration_embedder(model.model.duration_emebdder, f"{output_dir}/duration_embedder.onnx")
    
    # 导出Transformer
    export_flux_transformer(model.model.transformer, f"{output_dir}/transformer.onnx")
    
    # 导出Projection层
    export_proj_layer(model.model.fc, f"{output_dir}/proj.onnx")
    
    print(f"所有模型已导出到: {output_dir}")

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="导出TangoFlux模型到ONNX格式")
    parser.add_argument("--model_path", type=str, required=True, help="TangoFlux模型路径")
    parser.add_argument("--output_dir", type=str, required=True, help="输出目录")
    
    args = parser.parse_args()
    export_all(args.model_path, args.output_dir)