haowu11 commited on
Commit
21f6cc6
·
verified ·
1 Parent(s): 5f507f2

Delete kolors

Browse files
kolors/models/controlnet.py DELETED
@@ -1,887 +0,0 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- from dataclasses import dataclass
15
- from typing import Any, Dict, List, Optional, Tuple, Union
16
-
17
- import torch
18
- from torch import nn
19
- from torch.nn import functional as F
20
-
21
- from diffusers.configuration_utils import ConfigMixin, register_to_config
22
- from diffusers.loaders.single_file_model import FromOriginalModelMixin
23
- from diffusers.utils import BaseOutput, logging
24
- from diffusers.models.attention_processor import (
25
- ADDED_KV_ATTENTION_PROCESSORS,
26
- CROSS_ATTENTION_PROCESSORS,
27
- AttentionProcessor,
28
- AttnAddedKVProcessor,
29
- AttnProcessor,
30
- )
31
- from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
- from diffusers.models.modeling_utils import ModelMixin
33
-
34
- try:
35
- from diffusers.unets.unet_2d_blocks import (
36
- CrossAttnDownBlock2D,
37
- DownBlock2D,
38
- UNetMidBlock2D,
39
- UNetMidBlock2DCrossAttn,
40
- get_down_block,
41
- )
42
- from diffusers.unets.unet_2d_condition import UNet2DConditionModel
43
- except:
44
- from diffusers.models.unets.unet_2d_blocks import (
45
- CrossAttnDownBlock2D,
46
- DownBlock2D,
47
- UNetMidBlock2D,
48
- UNetMidBlock2DCrossAttn,
49
- get_down_block,
50
- )
51
- from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
52
-
53
-
54
-
55
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
-
57
-
58
- @dataclass
59
- class ControlNetOutput(BaseOutput):
60
- """
61
- The output of [`ControlNetModel`].
62
-
63
- Args:
64
- down_block_res_samples (`tuple[torch.Tensor]`):
65
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
66
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
67
- used to condition the original UNet's downsampling activations.
68
- mid_down_block_re_sample (`torch.Tensor`):
69
- The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
70
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
71
- Output can be used to condition the original UNet's middle block activation.
72
- """
73
-
74
- down_block_res_samples: Tuple[torch.Tensor]
75
- mid_block_res_sample: torch.Tensor
76
-
77
-
78
- class ControlNetConditioningEmbedding(nn.Module):
79
- """
80
- Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
81
- [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
82
- training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
83
- convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
84
- (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
85
- model) to encode image-space conditions ... into feature maps ..."
86
- """
87
-
88
- def __init__(
89
- self,
90
- conditioning_embedding_channels: int,
91
- conditioning_channels: int = 3,
92
- block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
93
- ):
94
- super().__init__()
95
-
96
- self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
97
-
98
- self.blocks = nn.ModuleList([])
99
-
100
- for i in range(len(block_out_channels) - 1):
101
- channel_in = block_out_channels[i]
102
- channel_out = block_out_channels[i + 1]
103
- self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
104
- self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
105
-
106
- self.conv_out = zero_module(
107
- nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
108
- )
109
-
110
- def forward(self, conditioning):
111
- embedding = self.conv_in(conditioning)
112
- embedding = F.silu(embedding)
113
-
114
- for block in self.blocks:
115
- embedding = block(embedding)
116
- embedding = F.silu(embedding)
117
-
118
- embedding = self.conv_out(embedding)
119
-
120
- return embedding
121
-
122
-
123
- class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
124
- """
125
- A ControlNet model.
126
-
127
- Args:
128
- in_channels (`int`, defaults to 4):
129
- The number of channels in the input sample.
130
- flip_sin_to_cos (`bool`, defaults to `True`):
131
- Whether to flip the sin to cos in the time embedding.
132
- freq_shift (`int`, defaults to 0):
133
- The frequency shift to apply to the time embedding.
134
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
135
- The tuple of downsample blocks to use.
136
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
137
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
138
- The tuple of output channels for each block.
139
- layers_per_block (`int`, defaults to 2):
140
- The number of layers per block.
141
- downsample_padding (`int`, defaults to 1):
142
- The padding to use for the downsampling convolution.
143
- mid_block_scale_factor (`float`, defaults to 1):
144
- The scale factor to use for the mid block.
145
- act_fn (`str`, defaults to "silu"):
146
- The activation function to use.
147
- norm_num_groups (`int`, *optional*, defaults to 32):
148
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
149
- in post-processing.
150
- norm_eps (`float`, defaults to 1e-5):
151
- The epsilon to use for the normalization.
152
- cross_attention_dim (`int`, defaults to 1280):
153
- The dimension of the cross attention features.
154
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
155
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
156
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
157
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
158
- encoder_hid_dim (`int`, *optional*, defaults to None):
159
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
160
- dimension to `cross_attention_dim`.
161
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
162
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
163
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
164
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
165
- The dimension of the attention heads.
166
- use_linear_projection (`bool`, defaults to `False`):
167
- class_embed_type (`str`, *optional*, defaults to `None`):
168
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
169
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
170
- addition_embed_type (`str`, *optional*, defaults to `None`):
171
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
172
- "text". "text" will use the `TextTimeEmbedding` layer.
173
- num_class_embeds (`int`, *optional*, defaults to 0):
174
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
175
- class conditioning with `class_embed_type` equal to `None`.
176
- upcast_attention (`bool`, defaults to `False`):
177
- resnet_time_scale_shift (`str`, defaults to `"default"`):
178
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
179
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
180
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
181
- `class_embed_type="projection"`.
182
- controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
183
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
184
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
185
- The tuple of output channel for each block in the `conditioning_embedding` layer.
186
- global_pool_conditions (`bool`, defaults to `False`):
187
- TODO(Patrick) - unused parameter.
188
- addition_embed_type_num_heads (`int`, defaults to 64):
189
- The number of heads to use for the `TextTimeEmbedding` layer.
190
- """
191
-
192
- _supports_gradient_checkpointing = True
193
-
194
- @register_to_config
195
- def __init__(
196
- self,
197
- in_channels: int = 4,
198
- conditioning_channels: int = 3,
199
- flip_sin_to_cos: bool = True,
200
- freq_shift: int = 0,
201
- down_block_types: Tuple[str, ...] = (
202
- "CrossAttnDownBlock2D",
203
- "CrossAttnDownBlock2D",
204
- "CrossAttnDownBlock2D",
205
- "DownBlock2D",
206
- ),
207
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
208
- only_cross_attention: Union[bool, Tuple[bool]] = False,
209
- block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
210
- layers_per_block: int = 2,
211
- downsample_padding: int = 1,
212
- mid_block_scale_factor: float = 1,
213
- act_fn: str = "silu",
214
- norm_num_groups: Optional[int] = 32,
215
- norm_eps: float = 1e-5,
216
- cross_attention_dim: int = 1280,
217
- transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
218
- encoder_hid_dim: Optional[int] = None,
219
- encoder_hid_dim_type: Optional[str] = None,
220
- attention_head_dim: Union[int, Tuple[int, ...]] = 8,
221
- num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
222
- use_linear_projection: bool = False,
223
- class_embed_type: Optional[str] = None,
224
- addition_embed_type: Optional[str] = None,
225
- addition_time_embed_dim: Optional[int] = None,
226
- num_class_embeds: Optional[int] = None,
227
- upcast_attention: bool = False,
228
- resnet_time_scale_shift: str = "default",
229
- projection_class_embeddings_input_dim: Optional[int] = None,
230
- controlnet_conditioning_channel_order: str = "rgb",
231
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
232
- global_pool_conditions: bool = False,
233
- addition_embed_type_num_heads: int = 64,
234
- ):
235
- super().__init__()
236
-
237
- # If `num_attention_heads` is not defined (which is the case for most models)
238
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
239
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
240
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
241
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
242
- # which is why we correct for the naming here.
243
- num_attention_heads = num_attention_heads or attention_head_dim
244
-
245
- # Check inputs
246
- if len(block_out_channels) != len(down_block_types):
247
- raise ValueError(
248
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
249
- )
250
-
251
- if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
252
- raise ValueError(
253
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
254
- )
255
-
256
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
257
- raise ValueError(
258
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
259
- )
260
-
261
- if isinstance(transformer_layers_per_block, int):
262
- transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
263
-
264
- # input
265
- conv_in_kernel = 3
266
- conv_in_padding = (conv_in_kernel - 1) // 2
267
- self.conv_in = nn.Conv2d(
268
- in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
269
- )
270
-
271
- # time
272
- time_embed_dim = block_out_channels[0] * 4
273
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
274
- timestep_input_dim = block_out_channels[0]
275
- self.time_embedding = TimestepEmbedding(
276
- timestep_input_dim,
277
- time_embed_dim,
278
- act_fn=act_fn,
279
- )
280
-
281
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
282
- encoder_hid_dim_type = "text_proj"
283
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
284
- logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
285
-
286
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
287
- raise ValueError(
288
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
289
- )
290
-
291
- if encoder_hid_dim_type == "text_proj":
292
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
293
- elif encoder_hid_dim_type == "text_image_proj":
294
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
295
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
296
- # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
297
- self.encoder_hid_proj = TextImageProjection(
298
- text_embed_dim=encoder_hid_dim,
299
- image_embed_dim=cross_attention_dim,
300
- cross_attention_dim=cross_attention_dim,
301
- )
302
-
303
- elif encoder_hid_dim_type is not None:
304
- raise ValueError(
305
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
306
- )
307
- else:
308
- self.encoder_hid_proj = None
309
-
310
- # class embedding
311
- if class_embed_type is None and num_class_embeds is not None:
312
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
313
- elif class_embed_type == "timestep":
314
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
315
- elif class_embed_type == "identity":
316
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
317
- elif class_embed_type == "projection":
318
- if projection_class_embeddings_input_dim is None:
319
- raise ValueError(
320
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
321
- )
322
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
323
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
324
- # 2. it projects from an arbitrary input dimension.
325
- #
326
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
327
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
328
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
329
- self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
330
- else:
331
- self.class_embedding = None
332
-
333
- if addition_embed_type == "text":
334
- if encoder_hid_dim is not None:
335
- text_time_embedding_from_dim = encoder_hid_dim
336
- else:
337
- text_time_embedding_from_dim = cross_attention_dim
338
-
339
- self.add_embedding = TextTimeEmbedding(
340
- text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
341
- )
342
- elif addition_embed_type == "text_image":
343
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
344
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
345
- # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
346
- self.add_embedding = TextImageTimeEmbedding(
347
- text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
348
- )
349
- elif addition_embed_type == "text_time":
350
- self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
351
- self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
352
-
353
- elif addition_embed_type is not None:
354
- raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
355
-
356
- # control net conditioning embedding
357
- self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
358
- conditioning_embedding_channels=block_out_channels[0],
359
- block_out_channels=conditioning_embedding_out_channels,
360
- conditioning_channels=conditioning_channels,
361
- )
362
-
363
- self.down_blocks = nn.ModuleList([])
364
- self.controlnet_down_blocks = nn.ModuleList([])
365
-
366
- if isinstance(only_cross_attention, bool):
367
- only_cross_attention = [only_cross_attention] * len(down_block_types)
368
-
369
- if isinstance(attention_head_dim, int):
370
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
371
-
372
- if isinstance(num_attention_heads, int):
373
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
374
-
375
- # down
376
- output_channel = block_out_channels[0]
377
-
378
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
379
- controlnet_block = zero_module(controlnet_block)
380
- self.controlnet_down_blocks.append(controlnet_block)
381
-
382
- for i, down_block_type in enumerate(down_block_types):
383
- input_channel = output_channel
384
- output_channel = block_out_channels[i]
385
- is_final_block = i == len(block_out_channels) - 1
386
-
387
- down_block = get_down_block(
388
- down_block_type,
389
- num_layers=layers_per_block,
390
- transformer_layers_per_block=transformer_layers_per_block[i],
391
- in_channels=input_channel,
392
- out_channels=output_channel,
393
- temb_channels=time_embed_dim,
394
- add_downsample=not is_final_block,
395
- resnet_eps=norm_eps,
396
- resnet_act_fn=act_fn,
397
- resnet_groups=norm_num_groups,
398
- cross_attention_dim=cross_attention_dim,
399
- num_attention_heads=num_attention_heads[i],
400
- attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
401
- downsample_padding=downsample_padding,
402
- use_linear_projection=use_linear_projection,
403
- only_cross_attention=only_cross_attention[i],
404
- upcast_attention=upcast_attention,
405
- resnet_time_scale_shift=resnet_time_scale_shift,
406
- )
407
- self.down_blocks.append(down_block)
408
-
409
- for _ in range(layers_per_block):
410
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
411
- controlnet_block = zero_module(controlnet_block)
412
- self.controlnet_down_blocks.append(controlnet_block)
413
-
414
- if not is_final_block:
415
- controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
416
- controlnet_block = zero_module(controlnet_block)
417
- self.controlnet_down_blocks.append(controlnet_block)
418
-
419
- # mid
420
- mid_block_channel = block_out_channels[-1]
421
-
422
- controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
423
- controlnet_block = zero_module(controlnet_block)
424
- self.controlnet_mid_block = controlnet_block
425
-
426
- if mid_block_type == "UNetMidBlock2DCrossAttn":
427
- self.mid_block = UNetMidBlock2DCrossAttn(
428
- transformer_layers_per_block=transformer_layers_per_block[-1],
429
- in_channels=mid_block_channel,
430
- temb_channels=time_embed_dim,
431
- resnet_eps=norm_eps,
432
- resnet_act_fn=act_fn,
433
- output_scale_factor=mid_block_scale_factor,
434
- resnet_time_scale_shift=resnet_time_scale_shift,
435
- cross_attention_dim=cross_attention_dim,
436
- num_attention_heads=num_attention_heads[-1],
437
- resnet_groups=norm_num_groups,
438
- use_linear_projection=use_linear_projection,
439
- upcast_attention=upcast_attention,
440
- )
441
- elif mid_block_type == "UNetMidBlock2D":
442
- self.mid_block = UNetMidBlock2D(
443
- in_channels=block_out_channels[-1],
444
- temb_channels=time_embed_dim,
445
- num_layers=0,
446
- resnet_eps=norm_eps,
447
- resnet_act_fn=act_fn,
448
- output_scale_factor=mid_block_scale_factor,
449
- resnet_groups=norm_num_groups,
450
- resnet_time_scale_shift=resnet_time_scale_shift,
451
- add_attention=False,
452
- )
453
- else:
454
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
455
-
456
- @classmethod
457
- def from_unet(
458
- cls,
459
- unet: UNet2DConditionModel,
460
- controlnet_conditioning_channel_order: str = "rgb",
461
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
462
- load_weights_from_unet: bool = True,
463
- conditioning_channels: int = 3,
464
- ):
465
- r"""
466
- Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
467
-
468
- Parameters:
469
- unet (`UNet2DConditionModel`):
470
- The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
471
- where applicable.
472
- """
473
- transformer_layers_per_block = (
474
- unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
475
- )
476
- encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
477
- encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
478
- addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
479
- addition_time_embed_dim = (
480
- unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
481
- )
482
-
483
- controlnet = cls(
484
- encoder_hid_dim=encoder_hid_dim,
485
- encoder_hid_dim_type=encoder_hid_dim_type,
486
- addition_embed_type=addition_embed_type,
487
- addition_time_embed_dim=addition_time_embed_dim,
488
- transformer_layers_per_block=transformer_layers_per_block,
489
- in_channels=unet.config.in_channels,
490
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
491
- freq_shift=unet.config.freq_shift,
492
- down_block_types=unet.config.down_block_types,
493
- only_cross_attention=unet.config.only_cross_attention,
494
- block_out_channels=unet.config.block_out_channels,
495
- layers_per_block=unet.config.layers_per_block,
496
- downsample_padding=unet.config.downsample_padding,
497
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
498
- act_fn=unet.config.act_fn,
499
- norm_num_groups=unet.config.norm_num_groups,
500
- norm_eps=unet.config.norm_eps,
501
- cross_attention_dim=unet.config.cross_attention_dim,
502
- attention_head_dim=unet.config.attention_head_dim,
503
- num_attention_heads=unet.config.num_attention_heads,
504
- use_linear_projection=unet.config.use_linear_projection,
505
- class_embed_type=unet.config.class_embed_type,
506
- num_class_embeds=unet.config.num_class_embeds,
507
- upcast_attention=unet.config.upcast_attention,
508
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
509
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
510
- mid_block_type=unet.config.mid_block_type,
511
- controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
512
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
513
- conditioning_channels=conditioning_channels,
514
- )
515
-
516
- if load_weights_from_unet:
517
- controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
518
- controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
519
- controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
520
-
521
- if controlnet.class_embedding:
522
- controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
523
-
524
- if hasattr(controlnet, "add_embedding"):
525
- controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
526
-
527
- controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
528
- controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
529
-
530
- return controlnet
531
-
532
- @property
533
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
534
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
535
- r"""
536
- Returns:
537
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
538
- indexed by its weight name.
539
- """
540
- # set recursively
541
- processors = {}
542
-
543
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
544
- if hasattr(module, "get_processor"):
545
- processors[f"{name}.processor"] = module.get_processor()
546
-
547
- for sub_name, child in module.named_children():
548
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
549
-
550
- return processors
551
-
552
- for name, module in self.named_children():
553
- fn_recursive_add_processors(name, module, processors)
554
-
555
- return processors
556
-
557
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
558
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
559
- r"""
560
- Sets the attention processor to use to compute attention.
561
-
562
- Parameters:
563
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
564
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
565
- for **all** `Attention` layers.
566
-
567
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
568
- processor. This is strongly recommended when setting trainable attention processors.
569
-
570
- """
571
- count = len(self.attn_processors.keys())
572
-
573
- if isinstance(processor, dict) and len(processor) != count:
574
- raise ValueError(
575
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
576
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
577
- )
578
-
579
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
580
- if hasattr(module, "set_processor"):
581
- if not isinstance(processor, dict):
582
- module.set_processor(processor)
583
- else:
584
- module.set_processor(processor.pop(f"{name}.processor"))
585
-
586
- for sub_name, child in module.named_children():
587
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
588
-
589
- for name, module in self.named_children():
590
- fn_recursive_attn_processor(name, module, processor)
591
-
592
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
593
- def set_default_attn_processor(self):
594
- """
595
- Disables custom attention processors and sets the default attention implementation.
596
- """
597
- if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
598
- processor = AttnAddedKVProcessor()
599
- elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
600
- processor = AttnProcessor()
601
- else:
602
- raise ValueError(
603
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
604
- )
605
-
606
- self.set_attn_processor(processor)
607
-
608
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
609
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
610
- r"""
611
- Enable sliced attention computation.
612
-
613
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
614
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
615
-
616
- Args:
617
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
618
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
619
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
620
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
621
- must be a multiple of `slice_size`.
622
- """
623
- sliceable_head_dims = []
624
-
625
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
626
- if hasattr(module, "set_attention_slice"):
627
- sliceable_head_dims.append(module.sliceable_head_dim)
628
-
629
- for child in module.children():
630
- fn_recursive_retrieve_sliceable_dims(child)
631
-
632
- # retrieve number of attention layers
633
- for module in self.children():
634
- fn_recursive_retrieve_sliceable_dims(module)
635
-
636
- num_sliceable_layers = len(sliceable_head_dims)
637
-
638
- if slice_size == "auto":
639
- # half the attention head size is usually a good trade-off between
640
- # speed and memory
641
- slice_size = [dim // 2 for dim in sliceable_head_dims]
642
- elif slice_size == "max":
643
- # make smallest slice possible
644
- slice_size = num_sliceable_layers * [1]
645
-
646
- slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
647
-
648
- if len(slice_size) != len(sliceable_head_dims):
649
- raise ValueError(
650
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
651
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
652
- )
653
-
654
- for i in range(len(slice_size)):
655
- size = slice_size[i]
656
- dim = sliceable_head_dims[i]
657
- if size is not None and size > dim:
658
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
659
-
660
- # Recursively walk through all the children.
661
- # Any children which exposes the set_attention_slice method
662
- # gets the message
663
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
664
- if hasattr(module, "set_attention_slice"):
665
- module.set_attention_slice(slice_size.pop())
666
-
667
- for child in module.children():
668
- fn_recursive_set_attention_slice(child, slice_size)
669
-
670
- reversed_slice_size = list(reversed(slice_size))
671
- for module in self.children():
672
- fn_recursive_set_attention_slice(module, reversed_slice_size)
673
-
674
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
675
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
676
- module.gradient_checkpointing = value
677
-
678
- def forward(
679
- self,
680
- sample: torch.Tensor,
681
- timestep: Union[torch.Tensor, float, int],
682
- encoder_hidden_states: torch.Tensor,
683
- controlnet_cond: torch.Tensor,
684
- conditioning_scale: float = 1.0,
685
- class_labels: Optional[torch.Tensor] = None,
686
- timestep_cond: Optional[torch.Tensor] = None,
687
- attention_mask: Optional[torch.Tensor] = None,
688
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
689
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
690
- guess_mode: bool = False,
691
- return_dict: bool = True,
692
- ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
693
- """
694
- The [`ControlNetModel`] forward method.
695
-
696
- Args:
697
- sample (`torch.Tensor`):
698
- The noisy input tensor.
699
- timestep (`Union[torch.Tensor, float, int]`):
700
- The number of timesteps to denoise an input.
701
- encoder_hidden_states (`torch.Tensor`):
702
- The encoder hidden states.
703
- controlnet_cond (`torch.Tensor`):
704
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
705
- conditioning_scale (`float`, defaults to `1.0`):
706
- The scale factor for ControlNet outputs.
707
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
708
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
709
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
710
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
711
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
712
- embeddings.
713
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
714
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
715
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
716
- negative values to the attention scores corresponding to "discard" tokens.
717
- added_cond_kwargs (`dict`):
718
- Additional conditions for the Stable Diffusion XL UNet.
719
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
720
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
721
- guess_mode (`bool`, defaults to `False`):
722
- In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
723
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
724
- return_dict (`bool`, defaults to `True`):
725
- Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
726
-
727
- Returns:
728
- [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
729
- If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
730
- returned where the first element is the sample tensor.
731
- """
732
- # check channel order
733
- channel_order = self.config.controlnet_conditioning_channel_order
734
-
735
- if channel_order == "rgb":
736
- # in rgb order by default
737
- ...
738
- elif channel_order == "bgr":
739
- controlnet_cond = torch.flip(controlnet_cond, dims=[1])
740
- else:
741
- raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
742
-
743
- # prepare attention_mask
744
- if attention_mask is not None:
745
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
746
- attention_mask = attention_mask.unsqueeze(1)
747
-
748
- #Todo
749
- if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
750
- encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
751
-
752
- # 1. time
753
- timesteps = timestep
754
- if not torch.is_tensor(timesteps):
755
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
756
- # This would be a good case for the `match` statement (Python 3.10+)
757
- is_mps = sample.device.type == "mps"
758
- if isinstance(timestep, float):
759
- dtype = torch.float32 if is_mps else torch.float64
760
- else:
761
- dtype = torch.int32 if is_mps else torch.int64
762
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
763
- elif len(timesteps.shape) == 0:
764
- timesteps = timesteps[None].to(sample.device)
765
-
766
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
767
- timesteps = timesteps.expand(sample.shape[0])
768
-
769
- t_emb = self.time_proj(timesteps)
770
-
771
- # timesteps does not contain any weights and will always return f32 tensors
772
- # but time_embedding might actually be running in fp16. so we need to cast here.
773
- # there might be better ways to encapsulate this.
774
- t_emb = t_emb.to(dtype=sample.dtype)
775
-
776
- emb = self.time_embedding(t_emb, timestep_cond)
777
- aug_emb = None
778
-
779
- if self.class_embedding is not None:
780
- if class_labels is None:
781
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
782
-
783
- if self.config.class_embed_type == "timestep":
784
- class_labels = self.time_proj(class_labels)
785
-
786
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
787
- emb = emb + class_emb
788
-
789
- if self.config.addition_embed_type is not None:
790
- if self.config.addition_embed_type == "text":
791
- aug_emb = self.add_embedding(encoder_hidden_states)
792
-
793
- elif self.config.addition_embed_type == "text_time":
794
- if "text_embeds" not in added_cond_kwargs:
795
- raise ValueError(
796
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
797
- )
798
- text_embeds = added_cond_kwargs.get("text_embeds")
799
- if "time_ids" not in added_cond_kwargs:
800
- raise ValueError(
801
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
802
- )
803
- time_ids = added_cond_kwargs.get("time_ids")
804
- time_embeds = self.add_time_proj(time_ids.flatten())
805
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
806
-
807
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
808
- add_embeds = add_embeds.to(emb.dtype)
809
- aug_emb = self.add_embedding(add_embeds)
810
-
811
- emb = emb + aug_emb if aug_emb is not None else emb
812
-
813
- # 2. pre-process
814
- sample = self.conv_in(sample)
815
-
816
- controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
817
- sample = sample + controlnet_cond
818
-
819
- # 3. down
820
- down_block_res_samples = (sample,)
821
- for downsample_block in self.down_blocks:
822
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
823
- sample, res_samples = downsample_block(
824
- hidden_states=sample,
825
- temb=emb,
826
- encoder_hidden_states=encoder_hidden_states,
827
- attention_mask=attention_mask,
828
- cross_attention_kwargs=cross_attention_kwargs,
829
- )
830
- else:
831
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
832
-
833
- down_block_res_samples += res_samples
834
-
835
- # 4. mid
836
- if self.mid_block is not None:
837
- if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
838
- sample = self.mid_block(
839
- sample,
840
- emb,
841
- encoder_hidden_states=encoder_hidden_states,
842
- attention_mask=attention_mask,
843
- cross_attention_kwargs=cross_attention_kwargs,
844
- )
845
- else:
846
- sample = self.mid_block(sample, emb)
847
-
848
- # 5. Control net blocks
849
-
850
- controlnet_down_block_res_samples = ()
851
-
852
- for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
853
- down_block_res_sample = controlnet_block(down_block_res_sample)
854
- controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
855
-
856
- down_block_res_samples = controlnet_down_block_res_samples
857
-
858
- mid_block_res_sample = self.controlnet_mid_block(sample)
859
-
860
- # 6. scaling
861
- if guess_mode and not self.config.global_pool_conditions:
862
- scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
863
- scales = scales * conditioning_scale
864
- down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
865
- mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
866
- else:
867
- down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
868
- mid_block_res_sample = mid_block_res_sample * conditioning_scale
869
-
870
- if self.config.global_pool_conditions:
871
- down_block_res_samples = [
872
- torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
873
- ]
874
- mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
875
-
876
- if not return_dict:
877
- return (down_block_res_samples, mid_block_res_sample)
878
-
879
- return ControlNetOutput(
880
- down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
881
- )
882
-
883
-
884
- def zero_module(module):
885
- for p in module.parameters():
886
- nn.init.zeros_(p)
887
- return module
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kolors/piplines/123.txt DELETED
File without changes