Hanna Yukhymenko's picture

Hanna Yukhymenko PRO

hannayukhymenko

AI & ML interests

Multilingual LLM, privacy/safety @ ETHZ

Recent Activity

Organizations

Gradio-Blocks-Party's profile picture MLX Community's profile picture Institute for Computer Science, Artificial intelligence and Technology 's profile picture Cohere Labs Community's profile picture

hannayukhymenko's activity

reacted to their post with 🔥 1 day ago
view post
Post
2090
🚀 We are delighted to announce MamayLM, a new state-of-the-art efficient Ukrainian LLM!

📈 MamayLM surpasses similar-sized models in both English and Ukrainian, while matching or overtaking up to 10x larger models.

📊 MamayLM is a 9B model that can run on a single GPU, enabling cost-efficient AI autonomy and adoption across sectors in Ukraine such as education, legal, healthcare, public services and others (e.g., by specializing it to particular use cases). MalayLM is also attractive for organizations wishing to preserve data privacy as it s efficiency allows it to run on a local machine.

🧠 MamayLM is trained on high-quality Ukrainian data and understands Ukrainian language, culture, and history. It is built on top of Google’s Gemma 2 9B model, but uses a number of new advances stemming from INSAIT’s experience in creating BgGPT, a Bulgarian LLM we released last year, now adopted nationwide and profiled several times by Google as a worldwide success case.

🤝 MamayLM is developed in a collaboration between researchers at INSAIT and ETH Zürich and is trained entirely via donations to INSAIT for AI compute resources.

📥 MamayLM is now freely available to download on INSAIT’s HuggingFace in both full and quantized versions. We also publicly release all Ukrainian benchmarks we evaluated on.

📝 Further, we release blog posts in both English and Ukrainian, sharing our approach to creating MamayLM, hoping to drive further improvements by the community.

🌎 The release of LLMs for various languages is part of INSAIT’s mission in ensuring countries can achieve AI autonomy in a cost-efficient, controlled, safe and predictable manner.

MamayLM model and benchmarks: INSAIT-Institute
Blog (EN): https://huggingface.co/blog/INSAIT-Institute/mamaylm
Blog (UKR): https://huggingface.co/blog/INSAIT-Institute/mamaylm-ukr
  • 1 reply
·
posted an update 1 day ago
view post
Post
2090
🚀 We are delighted to announce MamayLM, a new state-of-the-art efficient Ukrainian LLM!

📈 MamayLM surpasses similar-sized models in both English and Ukrainian, while matching or overtaking up to 10x larger models.

📊 MamayLM is a 9B model that can run on a single GPU, enabling cost-efficient AI autonomy and adoption across sectors in Ukraine such as education, legal, healthcare, public services and others (e.g., by specializing it to particular use cases). MalayLM is also attractive for organizations wishing to preserve data privacy as it s efficiency allows it to run on a local machine.

🧠 MamayLM is trained on high-quality Ukrainian data and understands Ukrainian language, culture, and history. It is built on top of Google’s Gemma 2 9B model, but uses a number of new advances stemming from INSAIT’s experience in creating BgGPT, a Bulgarian LLM we released last year, now adopted nationwide and profiled several times by Google as a worldwide success case.

🤝 MamayLM is developed in a collaboration between researchers at INSAIT and ETH Zürich and is trained entirely via donations to INSAIT for AI compute resources.

📥 MamayLM is now freely available to download on INSAIT’s HuggingFace in both full and quantized versions. We also publicly release all Ukrainian benchmarks we evaluated on.

📝 Further, we release blog posts in both English and Ukrainian, sharing our approach to creating MamayLM, hoping to drive further improvements by the community.

🌎 The release of LLMs for various languages is part of INSAIT’s mission in ensuring countries can achieve AI autonomy in a cost-efficient, controlled, safe and predictable manner.

MamayLM model and benchmarks: INSAIT-Institute
Blog (EN): https://huggingface.co/blog/INSAIT-Institute/mamaylm
Blog (UKR): https://huggingface.co/blog/INSAIT-Institute/mamaylm-ukr
  • 1 reply
·
reacted to stefan-it's post with ❤️ 3 months ago
view post
Post
1554
My latest project is the outcome of the last 2+ years working with TPUs from the amazing TPU Research Cloud (TRC) program and training Encoder-only LMs with the TensorFlow Model Garden library.

👉 Link: https://github.com/stefan-it/model-garden-lms

An overview of some features:

- Cheatsheet for setting-up a TPU VM Pod (with all necessary dependencies) to pretrain LMs with TF Model Garden
- Conversion scripts that convert TF Model Garden weights to Hugging Face Transformers-compatible models
- Supported architectures include BERT, BERT with Token Dropping and TEAMS

I also released BERT-based models pretrained on the great Hugging Face FineWeb and FineWeb-Edu datasets (10BT subset). With more to come!

👉 Model Hub Link: model-garden-lms

If you find these resources useful, please give them a like!

Made from Bavarian Oberland with ❤️ and 🥨.
reacted to davanstrien's post with 🚀 3 months ago
view post
Post
2286
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
·