Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +7 -0
- README.md +127 -0
- colbert_linear.pt +3 -0
- config.json +28 -0
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- sparse_linear.pt +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +20 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# BAAI-Multilingual-Base
|
11 |
+
|
12 |
+
**BAAI-Multilingual-Base** is a text embedding model distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
|
13 |
+
|
14 |
+
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
15 |
+
- Multi-Linguality: It can support more than 100 working languages.
|
16 |
+
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
|
17 |
+
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
Install:
|
22 |
+
```
|
23 |
+
pip install -U FlagEmbedding
|
24 |
+
```
|
25 |
+
|
26 |
+
### Generate Embedding for text
|
27 |
+
|
28 |
+
- Dense Embedding
|
29 |
+
```python
|
30 |
+
from FlagEmbedding import BGEM3FlagModel
|
31 |
+
|
32 |
+
model = BGEM3FlagModel('hanhainebula/baai-multilingual-base',
|
33 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
34 |
+
|
35 |
+
sentences_1 = ["What is BAAI-Multilingual-Base?", "Defination of BM25"]
|
36 |
+
sentences_2 = ["BAAI-Multilingual-Base is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
37 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
38 |
+
|
39 |
+
embeddings_1 = model.encode(sentences_1,
|
40 |
+
batch_size=12,
|
41 |
+
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
|
42 |
+
)['dense_vecs']
|
43 |
+
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
44 |
+
similarity = embeddings_1 @ embeddings_2.T
|
45 |
+
print(similarity)
|
46 |
+
# [[0.7026 0.439 ]
|
47 |
+
# [0.361 0.678 ]]
|
48 |
+
```
|
49 |
+
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
|
50 |
+
|
51 |
+
|
52 |
+
- Sparse Embedding (Lexical Weight)
|
53 |
+
```python
|
54 |
+
from FlagEmbedding import BGEM3FlagModel
|
55 |
+
|
56 |
+
model = BGEM3FlagModel('hanhainebula/baai-multilingual-base',
|
57 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
58 |
+
|
59 |
+
sentences_1 = ["What is BAAI-Multilingual-Base?", "Defination of BM25"]
|
60 |
+
sentences_2 = ["BAAI-Multilingual-Base is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
61 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
62 |
+
|
63 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
64 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
65 |
+
|
66 |
+
# you can see the weight for each token:
|
67 |
+
print(model.convert_id_to_token(output_1['lexical_weights']))
|
68 |
+
# [{'What': 0.10126, 'is': 0.1063, 'BA': 0.1858, 'AI': 0.2576, '-': 0.05154, 'Mul': 0.1381, 'ti': 0.1404, 'lingu': 0.2734, 'al': 0.10095,
|
69 |
+
# 'Bas': 0.2299, 'e': 0.153, '?': 0.05536}, {'De': 0.05002, 'fin': 0.1368, 'ation': 0.04495, 'of': 0.0633, 'BM': 0.2517, '25': 0.3333}]
|
70 |
+
|
71 |
+
|
72 |
+
# compute the scores via lexical mathcing
|
73 |
+
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
|
74 |
+
print(lexical_scores)
|
75 |
+
# 0.3666038513183594
|
76 |
+
|
77 |
+
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
|
78 |
+
# 0.0
|
79 |
+
```
|
80 |
+
|
81 |
+
- Multi-Vector (ColBERT)
|
82 |
+
```python
|
83 |
+
from FlagEmbedding import BGEM3FlagModel
|
84 |
+
|
85 |
+
model = BGEM3FlagModel('hanhainebula/baai-multilingual-base',
|
86 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
87 |
+
|
88 |
+
sentences_1 = ["What is BAAI-Multilingual-Base?", "Defination of BM25"]
|
89 |
+
sentences_2 = ["BAAI-Multilingual-Base is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
90 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
91 |
+
|
92 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
93 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
94 |
+
|
95 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
|
96 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
|
97 |
+
# 0.7982
|
98 |
+
# 0.4389
|
99 |
+
```
|
100 |
+
|
101 |
+
|
102 |
+
### Compute score for text pairs
|
103 |
+
Input a list of text pairs, you can get the scores computed by different methods.
|
104 |
+
```python
|
105 |
+
from FlagEmbedding import BGEM3FlagModel
|
106 |
+
|
107 |
+
model = BGEM3FlagModel('hanhainebula/baai-multilingual-base',
|
108 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
109 |
+
|
110 |
+
sentences_1 = ["What is BAAI-Multilingual-Base?", "Defination of BM25"]
|
111 |
+
sentences_2 = ["BAAI-Multilingual-Base is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
112 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
113 |
+
|
114 |
+
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
115 |
+
|
116 |
+
print(model.compute_score(sentence_pairs,
|
117 |
+
max_passage_length=128, # a smaller max length leads to a lower latency
|
118 |
+
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
|
119 |
+
|
120 |
+
# {
|
121 |
+
# 'colbert': [0.7982305884361267, 0.438856840133667, 0.4464578628540039, 0.7897794842720032],
|
122 |
+
# 'sparse': [0.366455078125, 0.01297760009765625, 0.0, 0.1802978515625],
|
123 |
+
# 'dense': [0.70263671875, 0.43896484375, 0.361083984375, 0.67822265625],
|
124 |
+
# 'sparse+dense': [0.5905762314796448, 0.29696908593177795, 0.2407226711511612, 0.5122477412223816],
|
125 |
+
# 'colbert+sparse+dense': [0.6736379861831665, 0.3537241816520691, 0.3230167627334595, 0.6232604384422302]
|
126 |
+
# }
|
127 |
+
```
|
colbert_linear.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19bfbae397c2b7524158c919d0e9b19393c5639d098f0a66932c91ed8f5f9abb
|
3 |
+
size 2100674
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.33.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.33.0",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5e0ce3470abf5ef3831aa1bd5553b486803e83251590ab7ff35a117cf6aad38
|
3 |
+
size 2271145830
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
sparse_linear.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45c93804d2142b8f6d7ec6914ae23a1eee9c6a1d27d83d908a20d2afb3595ad9
|
3 |
+
size 3516
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21106b6d7dab2952c1d496fb21d5dc9db75c28ed361a05f5020bbba27810dd08
|
3 |
+
size 17098108
|
tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 8192,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"sp_model_kwargs": {},
|
18 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
19 |
+
"unk_token": "<unk>"
|
20 |
+
}
|