Init
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.72 +/- 13.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c31551e2dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c31551e2e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c31551e2ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c31551e2f80>", "_build": "<function ActorCriticPolicy._build at 0x7c31551e3010>", "forward": "<function ActorCriticPolicy.forward at 0x7c31551e30a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c31551e3130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c31551e31c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c31551e3250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c31551e32e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c31551e3370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c31551e3400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3155382c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703133114970032315, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDpLb7cSnS8YY7DuvXfALnYhOU9+o8BOgAAgD8AAIA/c91gPnU0NT5DFtK9hX6Ovk7iEzyy0Da9AAAAAAAAAAANxiy+qNmMvF7kGLxggKW6zxT3PdJ1hDsAAIA/AACAP81cgzp74oG6f6e9Op9geDnX5Dm6cNFZuQAAgD8AAIA/rR9DPqiK0rwvKQu68TN/OAdSOr4O9zw5AACAPwAAgD/zxce99oRXugIRlbcyySGz6lmLOxfkqzYAAIA/AACAPxrSIT0X2Rg/o0SKPQrd2r6Sph081EONPQAAAAAAAAAAM5hBPm4z2LwL9Ho78GIAuscyO742iaq6AACAPwAAgD9zlT++9ucnvGz6SzYEqDc0PuqTPfT3hLUAAIA/AACAP4BLJr5DqHO8jHQFvOzpibqbHdc9cCleOwAAgD8AAIA/+ohWPuENqrzD8ko73WSfuarCFb5qtYC6AACAPwAAgD+Td3Q+brePPtFiy73FwIq+lfOWPLqFFL0AAAAAAAAAAAAYZT5Yit490BmIvQtzEb6D8/E8QegjvQAAAAAAAAAA5j8PPQB/qj+9sps+YUPnvnTdsDxed7E9AAAAAAAAAABzJpI9ce18uRrxBzlT7zE0smaOO5v0IbgAAAAAAACAP40Pj72GAIA+4hUwPQq9mL5ebYC7sq/yuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGfGTHKfWeMAWyUS9eMAXSUR0CkrCvo/zJ7dX2UKGgGR0ByR3LeQ+2WaAdNDgFoCEdApKxKG1x82XV9lChoBkdAcBxpeu3c6GgHS/doCEdApK2QwK0D2nV9lChoBkdAbX1kLhJiAmgHS+xoCEdApK3YwXZXdXV9lChoBkdAboggRsdkrmgHTQkBaAhHQKSufC0F8oh1fZQoaAZHQG9Vw4sEq2BoB0v2aAhHQKSuuy2QXAN1fZQoaAZHQHBU1zZHuqpoB0vxaAhHQKSvVGDtgKF1fZQoaAZHQHCRExREWqNoB0vmaAhHQKSvdronrpt1fZQoaAZHQG6t8V58jRloB0vSaAhHQKSvdl6JIlN1fZQoaAZHQHGoYdZJTVFoB008AWgIR0CksBrteD3/dX2UKGgGR0BygrT/hl19aAdNCAFoCEdApLAlSZSeiHV9lChoBkdAbi3K1XvH92gHS9hoCEdApLAtbaAWi3V9lChoBkdAb/48NhE0BWgHTQABaAhHQKSwwnLJSzh1fZQoaAZHQGPsYiosI3RoB03oA2gIR0CksNhkRSP2dX2UKGgGR0Bxb0Y0l7dBaAdL0mgIR0CksVrh73PBdX2UKGgGR0Beq/vF3pwCaAdN6ANoCEdApLJcZtNzsHV9lChoBkdAb7ZICEHt4WgHS+9oCEdApLLKLqD9O3V9lChoBkdAb1rNQj2SMmgHS+RoCEdApLLTxAjY7XV9lChoBkdAcAPK0lZ5iWgHS9NoCEdApLM0VSGahHV9lChoBkdAcSAjDKoybmgHTSoBaAhHQKSzN1tfoid1fZQoaAZHQHDFAEpy6tloB0vYaAhHQKSzR7cfvF51fZQoaAZHQHF5yFoL5RFoB0vzaAhHQKSzmjps41h1fZQoaAZHQG+9PF3pwCNoB0v3aAhHQKS0S+XZ5A11fZQoaAZHQHGEJSaVlf9oB00AAWgIR0CktH63RXwLdX2UKGgGR0BvVzohY/3WaAdL/WgIR0CktP08V58jdX2UKGgGR0ButnSSeRPoaAdL6GgIR0CktT3I+4b0dX2UKGgGR0ByjmizsyBTaAdNMQFoCEdApLVB3JPqLXV9lChoBkdAb6e4nWrfcmgHS8VoCEdApLWVolD4QHV9lChoBkdAYJbmaH9FWmgHTegDaAhHQKS1nJEH+qB1fZQoaAZHQHAX9u5z5oJoB0vlaAhHQKS2xfXPJJZ1fZQoaAZHQG1EYNqgyuZoB0vcaAhHQKS3EFPBSDR1fZQoaAZHQG/9KQiiZfFoB0vfaAhHQKS3NqRlpXZ1fZQoaAZHQHIv5nQID5loB00GAWgIR0Ckt3BufmLcdX2UKGgGR0BydSY2Kl54aAdL62gIR0Ckt+B2wFC+dX2UKGgGR0BhsBnWattAaAdN6ANoCEdApLgezF+/g3V9lChoBkdAcItQ2uPmxWgHS99oCEdApLiMlkYoAnV9lChoBkdAcLQHXmNipmgHS9ZoCEdApLiimwaBJHV9lChoBkdAcPrlzltCRmgHTUgBaAhHQKS5SYtxuKp1fZQoaAZHQG5A6dDpkf9oB0vjaAhHQKS57gQ6IWR1fZQoaAZHQHDjMJD3M6loB0vqaAhHQKS6FK02LpB1fZQoaAZHQG4XJQcghbJoB0v6aAhHQKS6FDVH4Gl1fZQoaAZHQG+HfEXLvCxoB0vRaAhHQKS6FCpFTeh1fZQoaAZHQHHNxO1v2oNoB00UAWgIR0Cku1kc81XOdX2UKGgGR0BwtQsFt8/maAdL2GgIR0Cku4pm/WUbdX2UKGgGR0Bw+xoFmnO0aAdL12gIR0Cku+eHaewtdX2UKGgGR0BwwEEU0vXcaAdL5WgIR0Cku/qKpDNRdX2UKGgGR0BxCxgw482aaAdLy2gIR0CkvBZlFtsOdX2UKGgGR0BxxGez2OABaAdNDwFoCEdApLxKnLq2SnV9lChoBkdAcR+87p3X7WgHS+ZoCEdApLzvuiN83XV9lChoBkdAceW4Pf8/EGgHTQQBaAhHQKS9E2pAD7t1fZQoaAZHQFKKLZBcAzZoB03oA2gIR0CkvTl3pwCKdX2UKGgGR0BwyI0ZWJaaaAdL/GgIR0CkvVWBjFyadX2UKGgGR0Btdc1CPZIyaAdL4mgIR0CkvWkUj9n9dX2UKGgGR0Bt5CGahHskaAdL1WgIR0Ckva+g13t8dX2UKGgGR0BvZOZ5Rjz7aAdL82gIR0CkvhYvFm4BdX2UKGgGR0BrB/v4M4LkaAdL5GgIR0Ckvt2gvlEJdX2UKGgGR0BybeKhtcfOaAdL62gIR0CkvyRYzSCwdX2UKGgGR0BxEWK+BYmtaAdL2mgIR0CkvzGD15B1dX2UKGgGR0BxbDKSxJNCaAdL52gIR0Ckv1k56t1ZdX2UKGgGR0BwFNJaq0dBaAdL6GgIR0Ckv4ClzltCdX2UKGgGR0BwSeU7jkuIaAdNUwFoCEdApL+X0btJF3V9lChoBkdAcKCdvKlpGmgHS+9oCEdApMCxPhybQXV9lChoBkdAa4kj4YaYNWgHTaMBaAhHQKTAyD3/PxB1fZQoaAZHQG1beLvTgEVoB0vtaAhHQKTA0bLEDQt1fZQoaAZHQG5nb8vVVghoB0vwaAhHQKTBEPbO/tZ1fZQoaAZHQHFe0KE384xoB009AWgIR0CkwRbOeJ53dX2UKGgGR0ByI0BgeA/caAdL8mgIR0CkwV0ZNwirdX2UKGgGR0BymVaUzKs/aAdNIgFoCEdApMGlJ17pmnV9lChoBkdAY3N3M6ij+WgHTegDaAhHQKTB/riVB2R1fZQoaAZHQHCggFkhA4ZoB01tAWgIR0Ckwk7qyGBXdX2UKGgGR0BviIbZOBUaaAdL1mgIR0CkwlKgqVhTdX2UKGgGR0BvacRWcSXdaAdNMgFoCEdApMKhUT+NtXV9lChoBkdAcUmYcvM8o2gHS+RoCEdApMLJvitJWnV9lChoBkdAceOHt4RmLGgHS/VoCEdApMLfbfxc3XV9lChoBkdAcP+igkC3gGgHTQUBaAhHQKTC6LG7z091fZQoaAZHQG3Xi5mRNh5oB0vWaAhHQKTDwL5ylvZ1fZQoaAZHQG6CjIaLn9xoB0vjaAhHQKTD1vkRzzV1fZQoaAZHQHBVwtOEdvNoB01CAWgIR0CkxDuJLuhLdX2UKGgGR0BvguiFj/dZaAdL3WgIR0CkxHVN5+pgdX2UKGgGR0BwuoOVgQYlaAdL+WgIR0CkxU24mTkidX2UKGgGR0BtLPbAUL2IaAdL42gIR0CkxV94FA3UdX2UKGgGR0BFcNQTEit8aAdLumgIR0CkxXj+JgstdX2UKGgGR0BtKd5fMOf/aAdL6mgIR0Ckxd/hESdwdX2UKGgGR0Bwgme5Fw1jaAdNGQFoCEdApMa9Q2uPm3V9lChoBkdAcca/Vy3kP2gHS/toCEdApMb9Kyv9tXV9lChoBkdAcpn5qdpZfWgHTZ4BaAhHQKTHfyvs7dV1fZQoaAZHQHBwKWw/xDtoB0vdaAhHQKTHjq8Djip1fZQoaAZHQHMtJn+Q2ddoB0vgaAhHQKTHuS39aU11fZQoaAZHQHJ8koScslNoB00lAWgIR0Ckx74zJp35dX2UKGgGR0Bx7L4ZdfLLaAdL9mgIR0CkyIaJqIrOdX2UKGgGR0BxaCwV0tAcaAdL6GgIR0CkyWUqhDgJdX2UKGgGR0Bue8XJo0yhaAdL7mgIR0CkyZNjTa0ydX2UKGgGR0Btx+MIeHSGaAdL42gIR0Ckyec2itaIdX2UKGgGR0BzPnQ9ic5KaAdNHAFoCEdApMqAhOgxrXV9lChoBkdAbVZLvkRzzWgHS+NoCEdApMsNxXGOuXV9lChoBkdAcB4MfA9FF2gHS/doCEdApMsro0Q9R3V9lChoBkdAcDeJV81Gb2gHS9xoCEdApMt5+jM3ZXV9lChoBkdAcBLfcvduYWgHTZkBaAhHQKTLvKzRhMJ1fZQoaAZHQHA56rWAf+1oB0v0aAhHQKTMD/J/5L11fZQoaAZHQHBU5AdGRV9oB0vwaAhHQKTN8VYZEUl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c2dc976b0d55c2387ab54fadc3276a5233d365ac4f082ca6aabe33693a8f29a
|
3 |
+
size 147979
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c31551e2dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c31551e2e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c31551e2ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c31551e2f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c31551e3010>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c31551e30a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c31551e3130>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c31551e31c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c31551e3250>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c31551e32e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c31551e3370>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c31551e3400>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c3155382c40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1703133114970032315,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDpLb7cSnS8YY7DuvXfALnYhOU9+o8BOgAAgD8AAIA/c91gPnU0NT5DFtK9hX6Ovk7iEzyy0Da9AAAAAAAAAAANxiy+qNmMvF7kGLxggKW6zxT3PdJ1hDsAAIA/AACAP81cgzp74oG6f6e9Op9geDnX5Dm6cNFZuQAAgD8AAIA/rR9DPqiK0rwvKQu68TN/OAdSOr4O9zw5AACAPwAAgD/zxce99oRXugIRlbcyySGz6lmLOxfkqzYAAIA/AACAPxrSIT0X2Rg/o0SKPQrd2r6Sph081EONPQAAAAAAAAAAM5hBPm4z2LwL9Ho78GIAuscyO742iaq6AACAPwAAgD9zlT++9ucnvGz6SzYEqDc0PuqTPfT3hLUAAIA/AACAP4BLJr5DqHO8jHQFvOzpibqbHdc9cCleOwAAgD8AAIA/+ohWPuENqrzD8ko73WSfuarCFb5qtYC6AACAPwAAgD+Td3Q+brePPtFiy73FwIq+lfOWPLqFFL0AAAAAAAAAAAAYZT5Yit490BmIvQtzEb6D8/E8QegjvQAAAAAAAAAA5j8PPQB/qj+9sps+YUPnvnTdsDxed7E9AAAAAAAAAABzJpI9ce18uRrxBzlT7zE0smaOO5v0IbgAAAAAAACAP40Pj72GAIA+4hUwPQq9mL5ebYC7sq/yuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGfGTHKfWeMAWyUS9eMAXSUR0CkrCvo/zJ7dX2UKGgGR0ByR3LeQ+2WaAdNDgFoCEdApKxKG1x82XV9lChoBkdAcBxpeu3c6GgHS/doCEdApK2QwK0D2nV9lChoBkdAbX1kLhJiAmgHS+xoCEdApK3YwXZXdXV9lChoBkdAboggRsdkrmgHTQkBaAhHQKSufC0F8oh1fZQoaAZHQG9Vw4sEq2BoB0v2aAhHQKSuuy2QXAN1fZQoaAZHQHBU1zZHuqpoB0vxaAhHQKSvVGDtgKF1fZQoaAZHQHCRExREWqNoB0vmaAhHQKSvdronrpt1fZQoaAZHQG6t8V58jRloB0vSaAhHQKSvdl6JIlN1fZQoaAZHQHGoYdZJTVFoB008AWgIR0CksBrteD3/dX2UKGgGR0BygrT/hl19aAdNCAFoCEdApLAlSZSeiHV9lChoBkdAbi3K1XvH92gHS9hoCEdApLAtbaAWi3V9lChoBkdAb/48NhE0BWgHTQABaAhHQKSwwnLJSzh1fZQoaAZHQGPsYiosI3RoB03oA2gIR0CksNhkRSP2dX2UKGgGR0Bxb0Y0l7dBaAdL0mgIR0CksVrh73PBdX2UKGgGR0Beq/vF3pwCaAdN6ANoCEdApLJcZtNzsHV9lChoBkdAb7ZICEHt4WgHS+9oCEdApLLKLqD9O3V9lChoBkdAb1rNQj2SMmgHS+RoCEdApLLTxAjY7XV9lChoBkdAcAPK0lZ5iWgHS9NoCEdApLM0VSGahHV9lChoBkdAcSAjDKoybmgHTSoBaAhHQKSzN1tfoid1fZQoaAZHQHDFAEpy6tloB0vYaAhHQKSzR7cfvF51fZQoaAZHQHF5yFoL5RFoB0vzaAhHQKSzmjps41h1fZQoaAZHQG+9PF3pwCNoB0v3aAhHQKS0S+XZ5A11fZQoaAZHQHGEJSaVlf9oB00AAWgIR0CktH63RXwLdX2UKGgGR0BvVzohY/3WaAdL/WgIR0CktP08V58jdX2UKGgGR0ButnSSeRPoaAdL6GgIR0CktT3I+4b0dX2UKGgGR0ByjmizsyBTaAdNMQFoCEdApLVB3JPqLXV9lChoBkdAb6e4nWrfcmgHS8VoCEdApLWVolD4QHV9lChoBkdAYJbmaH9FWmgHTegDaAhHQKS1nJEH+qB1fZQoaAZHQHAX9u5z5oJoB0vlaAhHQKS2xfXPJJZ1fZQoaAZHQG1EYNqgyuZoB0vcaAhHQKS3EFPBSDR1fZQoaAZHQG/9KQiiZfFoB0vfaAhHQKS3NqRlpXZ1fZQoaAZHQHIv5nQID5loB00GAWgIR0Ckt3BufmLcdX2UKGgGR0BydSY2Kl54aAdL62gIR0Ckt+B2wFC+dX2UKGgGR0BhsBnWattAaAdN6ANoCEdApLgezF+/g3V9lChoBkdAcItQ2uPmxWgHS99oCEdApLiMlkYoAnV9lChoBkdAcLQHXmNipmgHS9ZoCEdApLiimwaBJHV9lChoBkdAcPrlzltCRmgHTUgBaAhHQKS5SYtxuKp1fZQoaAZHQG5A6dDpkf9oB0vjaAhHQKS57gQ6IWR1fZQoaAZHQHDjMJD3M6loB0vqaAhHQKS6FK02LpB1fZQoaAZHQG4XJQcghbJoB0v6aAhHQKS6FDVH4Gl1fZQoaAZHQG+HfEXLvCxoB0vRaAhHQKS6FCpFTeh1fZQoaAZHQHHNxO1v2oNoB00UAWgIR0Cku1kc81XOdX2UKGgGR0BwtQsFt8/maAdL2GgIR0Cku4pm/WUbdX2UKGgGR0Bw+xoFmnO0aAdL12gIR0Cku+eHaewtdX2UKGgGR0BwwEEU0vXcaAdL5WgIR0Cku/qKpDNRdX2UKGgGR0BxCxgw482aaAdLy2gIR0CkvBZlFtsOdX2UKGgGR0BxxGez2OABaAdNDwFoCEdApLxKnLq2SnV9lChoBkdAcR+87p3X7WgHS+ZoCEdApLzvuiN83XV9lChoBkdAceW4Pf8/EGgHTQQBaAhHQKS9E2pAD7t1fZQoaAZHQFKKLZBcAzZoB03oA2gIR0CkvTl3pwCKdX2UKGgGR0BwyI0ZWJaaaAdL/GgIR0CkvVWBjFyadX2UKGgGR0Btdc1CPZIyaAdL4mgIR0CkvWkUj9n9dX2UKGgGR0Bt5CGahHskaAdL1WgIR0Ckva+g13t8dX2UKGgGR0BvZOZ5Rjz7aAdL82gIR0CkvhYvFm4BdX2UKGgGR0BrB/v4M4LkaAdL5GgIR0Ckvt2gvlEJdX2UKGgGR0BybeKhtcfOaAdL62gIR0CkvyRYzSCwdX2UKGgGR0BxEWK+BYmtaAdL2mgIR0CkvzGD15B1dX2UKGgGR0BxbDKSxJNCaAdL52gIR0Ckv1k56t1ZdX2UKGgGR0BwFNJaq0dBaAdL6GgIR0Ckv4ClzltCdX2UKGgGR0BwSeU7jkuIaAdNUwFoCEdApL+X0btJF3V9lChoBkdAcKCdvKlpGmgHS+9oCEdApMCxPhybQXV9lChoBkdAa4kj4YaYNWgHTaMBaAhHQKTAyD3/PxB1fZQoaAZHQG1beLvTgEVoB0vtaAhHQKTA0bLEDQt1fZQoaAZHQG5nb8vVVghoB0vwaAhHQKTBEPbO/tZ1fZQoaAZHQHFe0KE384xoB009AWgIR0CkwRbOeJ53dX2UKGgGR0ByI0BgeA/caAdL8mgIR0CkwV0ZNwirdX2UKGgGR0BymVaUzKs/aAdNIgFoCEdApMGlJ17pmnV9lChoBkdAY3N3M6ij+WgHTegDaAhHQKTB/riVB2R1fZQoaAZHQHCggFkhA4ZoB01tAWgIR0Ckwk7qyGBXdX2UKGgGR0BviIbZOBUaaAdL1mgIR0CkwlKgqVhTdX2UKGgGR0BvacRWcSXdaAdNMgFoCEdApMKhUT+NtXV9lChoBkdAcUmYcvM8o2gHS+RoCEdApMLJvitJWnV9lChoBkdAceOHt4RmLGgHS/VoCEdApMLfbfxc3XV9lChoBkdAcP+igkC3gGgHTQUBaAhHQKTC6LG7z091fZQoaAZHQG3Xi5mRNh5oB0vWaAhHQKTDwL5ylvZ1fZQoaAZHQG6CjIaLn9xoB0vjaAhHQKTD1vkRzzV1fZQoaAZHQHBVwtOEdvNoB01CAWgIR0CkxDuJLuhLdX2UKGgGR0BvguiFj/dZaAdL3WgIR0CkxHVN5+pgdX2UKGgGR0BwuoOVgQYlaAdL+WgIR0CkxU24mTkidX2UKGgGR0BtLPbAUL2IaAdL42gIR0CkxV94FA3UdX2UKGgGR0BFcNQTEit8aAdLumgIR0CkxXj+JgstdX2UKGgGR0BtKd5fMOf/aAdL6mgIR0Ckxd/hESdwdX2UKGgGR0Bwgme5Fw1jaAdNGQFoCEdApMa9Q2uPm3V9lChoBkdAcca/Vy3kP2gHS/toCEdApMb9Kyv9tXV9lChoBkdAcpn5qdpZfWgHTZ4BaAhHQKTHfyvs7dV1fZQoaAZHQHBwKWw/xDtoB0vdaAhHQKTHjq8Djip1fZQoaAZHQHMtJn+Q2ddoB0vgaAhHQKTHuS39aU11fZQoaAZHQHJ8koScslNoB00lAWgIR0Ckx74zJp35dX2UKGgGR0Bx7L4ZdfLLaAdL9mgIR0CkyIaJqIrOdX2UKGgGR0BxaCwV0tAcaAdL6GgIR0CkyWUqhDgJdX2UKGgGR0Bue8XJo0yhaAdL7mgIR0CkyZNjTa0ydX2UKGgGR0Btx+MIeHSGaAdL42gIR0Ckyec2itaIdX2UKGgGR0BzPnQ9ic5KaAdNHAFoCEdApMqAhOgxrXV9lChoBkdAbVZLvkRzzWgHS+NoCEdApMsNxXGOuXV9lChoBkdAcB4MfA9FF2gHS/doCEdApMsro0Q9R3V9lChoBkdAcDeJV81Gb2gHS9xoCEdApMt5+jM3ZXV9lChoBkdAcBLfcvduYWgHTZkBaAhHQKTLvKzRhMJ1fZQoaAZHQHA56rWAf+1oB0v0aAhHQKTMD/J/5L11fZQoaAZHQHBU5AdGRV9oB0vwaAhHQKTN8VYZEUl1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 380,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce4d659277b9ad637fb139d1b2af34589d27266272d3af0bd63be627daa6eac
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a57b2f3d47bc5486fd733584d0e1875dedace4cc0be43419703151679bbb8d95
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (173 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.7242804, "std_reward": 13.539236038927847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-21T05:05:18.606130"}
|