--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v4 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5788 - Accuracy: 0.8580 - F1: 0.8573 - Precision: 0.8576 - Recall: 0.8580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6508 | 1.0 | 3527 | 0.6211 | 0.7680 | 0.7675 | 0.7789 | 0.7680 | | 0.4088 | 2.0 | 7054 | 0.4281 | 0.8562 | 0.8549 | 0.8574 | 0.8562 | | 0.2476 | 3.0 | 10581 | 0.4526 | 0.8577 | 0.8570 | 0.8574 | 0.8577 | | 0.1298 | 4.0 | 14108 | 0.5618 | 0.8638 | 0.8630 | 0.8635 | 0.8638 | | 0.0615 | 5.0 | 17635 | 0.6939 | 0.8632 | 0.8629 | 0.8629 | 0.8632 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3