Hady Rashwan
commited on
Commit
·
5b4c4b1
1
Parent(s):
4e65b85
adding initial code for quote feature
Browse files- .env.example +3 -1
- app.py +37 -2
- matching_documents.sql +21 -0
.env.example
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
SUPABASE_URL=supabase_url
|
2 |
-
SUPABASE_KEY=supabase_key
|
|
|
|
|
|
1 |
SUPABASE_URL=supabase_url
|
2 |
+
SUPABASE_KEY=supabase_key
|
3 |
+
OPENWEATHERMAP_API_KEY=weather_api_key
|
4 |
+
HUGGINGFACE_API_KEY=hugging_face_api_key
|
app.py
CHANGED
@@ -1,19 +1,34 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import datetime
|
|
|
4 |
from huggingface_hub import InferenceClient
|
|
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
# Load environment variables
|
8 |
load_dotenv()
|
9 |
|
10 |
# Get API keys from environment variables
|
11 |
-
WEATHER_API_KEY =
|
12 |
-
HF_API_KEY =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Initialize the Hugging Face Inference Client
|
15 |
client = InferenceClient(token=HF_API_KEY)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
def get_weather(city):
|
18 |
base_url = "http://api.openweathermap.org/data/2.5/weather"
|
19 |
params = {
|
@@ -48,6 +63,22 @@ def get_ai_clothing_suggestion(weather_data):
|
|
48 |
|
49 |
return response
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
st.title("AI-Powered Weather and Clothing Suggestion App")
|
52 |
|
53 |
city = st.text_input("Enter a city name:", "London")
|
@@ -72,6 +103,10 @@ if st.button("Get Weather and Clothing Suggestion"):
|
|
72 |
clothing_suggestion = get_ai_clothing_suggestion(weather_data)
|
73 |
st.subheader("What to Wear (AI Suggestion):")
|
74 |
st.write(clothing_suggestion)
|
|
|
|
|
|
|
|
|
75 |
else:
|
76 |
st.error("City not found. Please check the spelling and try again.")
|
77 |
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import datetime
|
4 |
+
import os
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from supabase import create_client, Client
|
8 |
from dotenv import load_dotenv
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
# Get API keys from environment variables
|
14 |
+
WEATHER_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
|
15 |
+
HF_API_KEY = os.getenv("HUGGINGFACE_API_KEY",)
|
16 |
+
SUPABASE_URL = os.getenv("SUPABASE_URL")
|
17 |
+
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
|
18 |
+
|
19 |
+
# WEATHER_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY",st.secrets["OPENWEATHERMAP_API_KEY"])
|
20 |
+
# HF_API_KEY = os.getenv("HUGGINGFACE_API_KEY",st.secrets["HUGGINGFACE_API_KEY"])
|
21 |
+
# SUPABASE_URL = os.getenv("SUPABASE_URL",st.secrets["SUPABASE_URL"])
|
22 |
+
# SUPABASE_KEY = os.getenv("SUPABASE_KEY",st.secrets["SUPABASE_KEY"])
|
23 |
|
24 |
# Initialize the Hugging Face Inference Client
|
25 |
client = InferenceClient(token=HF_API_KEY)
|
26 |
|
27 |
+
# Initialize Supabase
|
28 |
+
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
29 |
+
|
30 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
31 |
+
|
32 |
def get_weather(city):
|
33 |
base_url = "http://api.openweathermap.org/data/2.5/weather"
|
34 |
params = {
|
|
|
63 |
|
64 |
return response
|
65 |
|
66 |
+
def get_relevant_quote(weather_condition):
|
67 |
+
# Encode the weather condition
|
68 |
+
weather_embedding = model.encode(weather_condition).tolist()
|
69 |
+
|
70 |
+
response = supabase.rpc("match_quote_embeddings",{
|
71 |
+
'query_embedding': weather_embedding,
|
72 |
+
'match_threshold': 0.5,
|
73 |
+
'match_count': 1
|
74 |
+
}).execute()
|
75 |
+
|
76 |
+
|
77 |
+
if response.data and len(response.data) > 0:
|
78 |
+
return response.data[0]['content']
|
79 |
+
else:
|
80 |
+
return "No relevant quote found."
|
81 |
+
|
82 |
st.title("AI-Powered Weather and Clothing Suggestion App")
|
83 |
|
84 |
city = st.text_input("Enter a city name:", "London")
|
|
|
103 |
clothing_suggestion = get_ai_clothing_suggestion(weather_data)
|
104 |
st.subheader("What to Wear (AI Suggestion):")
|
105 |
st.write(clothing_suggestion)
|
106 |
+
with st.spinner("Finding a relevant quote..."):
|
107 |
+
quote = get_relevant_quote(f"{main_weather} {description}")
|
108 |
+
st.subheader("Quote of the Day:")
|
109 |
+
st.write(quote)
|
110 |
else:
|
111 |
st.error("City not found. Please check the spelling and try again.")
|
112 |
|
matching_documents.sql
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
create or replace function match_handbook_docs (
|
2 |
+
query_embedding vector(1024),
|
3 |
+
match_threshold float,
|
4 |
+
match_count int
|
5 |
+
)
|
6 |
+
returns table (
|
7 |
+
id bigint,
|
8 |
+
content text,
|
9 |
+
similarity float
|
10 |
+
)
|
11 |
+
language sql stable
|
12 |
+
as $$
|
13 |
+
select
|
14 |
+
handbook_docs.id,
|
15 |
+
handbook_docs.content,
|
16 |
+
1 - (handbook_docs.embedding <=> query_embedding) as similarity
|
17 |
+
from handbook_docs
|
18 |
+
where 1 - (handbook_docs.embedding <=> query_embedding) > match_threshold
|
19 |
+
order by (handbook_docs.embedding <=> query_embedding) asc
|
20 |
+
limit match_count;
|
21 |
+
$$;
|