--- license: mit datasets: - cognitivecomputations/dolphin-r1 - GeneralReasoning/GeneralThought-430K - gustavecortal/PsychologicalReasoning-15k language: - en pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B tags: - philosophy - psychology - reasoning - social - emotion --- ## Presentation Qwen3-psychological-reasoning, a language model finetuned on 15k psychological and philosophical reasoning traces. Qwen3-psychological-reasoning is based on Qwen3 and was finetuned on a subset of open reasoning traces from [Dolphin R1](https://huggingface.co/datasets/cognitivecomputations/dolphin-r1) and [General Reasoning](https://huggingface.co/datasets/GeneralReasoning/GeneralThought-430K). Available sizes are: [0.6B](https://huggingface.co/gustavecortal/Qwen3-psychological-reasoning-0.6B), [1.7B](https://huggingface.co/gustavecortal/Qwen3-psychological-reasoning-1.7B), [4B](https://huggingface.co/gustavecortal/Qwen3-psychological-reasoning-4B), [8B](https://huggingface.co/gustavecortal/Qwen3-psychological-reasoning-8B). ## How to use ```py from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.pipelines import pipeline import torch repo = "gustavecortal/Qwen3-psychological-reasoning-8B" tokenizer = AutoTokenizer.from_pretrained(repo, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( repo, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = tokenizer.apply_chat_template( [ { "role": "user", "content": "Create a new psychotherapeutic technique based on cybernetic principles", } ], tokenize=False, add_generation_prompt=True, enable_thinking=True, ) print(pipe(prompt, max_new_tokens=2048, do_sample=True)[0]["generated_text"]) ``` ## Methodology We perform domain filtering on [Dolphin R1](https://huggingface.co/datasets/cognitivecomputations/dolphin-r1) and [General Reasoning](https://huggingface.co/datasets/GeneralReasoning/GeneralThought-430K). Prompts are embedded, clustered with k-means (k=20 000) and majority-voted for domain labels using [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B), following the [Intelligent Internet pipeline](https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706). Clusters tagged psychology or philosophy were retained for LoRA finetuning (rank=8, alpha=16, max length=2048, epoch=1, batch size=16). This work was performed using HPC resources (Jean Zay supercomputer) from GENCI-IDRIS (Grant 20XX-AD011014205). ## Inspiration Qwen3-psychological-reasoning aims to reason about psychological and philosophical concepts such as self-image, emotion, and existence. Qwen3-psychological-reasoning was inspired by my position paper on emotion analysis: [Improving Language Models for Emotion Analysis: Insights from Cognitive Science](https://aclanthology.org/2024.cmcl-1.23/). ## Contact Mail: gustave.cortal@ens-paris-saclay.fr Website: [gustavecortal.com](gustavecortal.com)