guillaumephd commited on
Commit
f14f5d1
·
1 Parent(s): 9ae7775

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -15
README.md CHANGED
@@ -1,31 +1,59 @@
1
  ---
2
  license: llama2
3
  base_model: TheBloke/Xwin-LM-7B-V0.1-GPTQ
4
- tags:
5
- - generated_from_trainer
6
  model-index:
7
  - name: cleante
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- # cleante
15
 
16
- This model is a fine-tuned version of [TheBloke/Xwin-LM-7B-V0.1-GPTQ](https://huggingface.co/TheBloke/Xwin-LM-7B-V0.1-GPTQ) on an unknown dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ## Model description
19
 
20
- More information needed
21
 
22
  ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
  ## Training and evaluation data
27
 
28
- More information needed
29
 
30
  ## Training procedure
31
 
@@ -35,14 +63,8 @@ The following hyperparameters were used during training:
35
  - learning_rate: 0.0002
36
  - train_batch_size: 8
37
  - eval_batch_size: 8
38
- - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: cosine
41
- - training_steps: 250
42
-
43
- ### Training results
44
-
45
-
46
 
47
  ### Framework versions
48
 
 
1
  ---
2
  license: llama2
3
  base_model: TheBloke/Xwin-LM-7B-V0.1-GPTQ
 
 
4
  model-index:
5
  - name: cleante
6
  results: []
7
  ---
8
 
9
+ # Cleante
 
10
 
11
+ Cleante is a fine-tuned model, based on a pre-trained [7B](https://huggingface.co/TheBloke/Xwin-LM-7B-V0.1-GPTQ) model.
12
 
13
+ ## Usage
14
+
15
+ ```python
16
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
17
+
18
+ model_name = "guillaumephd/cleante"
19
+
20
+ # Load the model and tokenizer
21
+ model = AutoModelForCausalLM.from_pretrained(model_name)
22
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
23
+
24
+ # Define the text generation pipeline
25
+ generator = pipeline(
26
+ "text-generation",
27
+ model=model,
28
+ tokenizer=tokenizer,
29
+ device=0 # Use GPU if available please
30
+ )
31
+
32
+ # Generate text using the Cleante model
33
+ prompt = "###Human: What's your nickname, assistant? ###Assistant: "
34
+ output = generator(prompt, max_length=100, do_sample=True, temperature=0.5, repetition_penalty=1.2,)
35
+
36
+ # Print the generated text
37
+ print(output[0]["generated_text"])
38
+
39
+ outputs = model.generate(**inputs, generation_config=generation_config)
40
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
41
+
42
+ # The model should output a text that looks like:
43
+ # "My name is Cléante, and I was trained by Guillaume as a language model."
44
+ ```
45
 
46
  ## Model description
47
 
48
+ See above.
49
 
50
  ## Intended uses & limitations
51
 
52
+ Demonstration purpose only.
53
 
54
  ## Training and evaluation data
55
 
56
+ Personal data.
57
 
58
  ## Training procedure
59
 
 
63
  - learning_rate: 0.0002
64
  - train_batch_size: 8
65
  - eval_batch_size: 8
 
66
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
  - lr_scheduler_type: cosine
 
 
 
 
 
68
 
69
  ### Framework versions
70