guillaumephd
commited on
Commit
·
f14f5d1
1
Parent(s):
9ae7775
Update README.md
Browse files
README.md
CHANGED
@@ -1,31 +1,59 @@
|
|
1 |
---
|
2 |
license: llama2
|
3 |
base_model: TheBloke/Xwin-LM-7B-V0.1-GPTQ
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
model-index:
|
7 |
- name: cleante
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
-
|
21 |
|
22 |
## Intended uses & limitations
|
23 |
|
24 |
-
|
25 |
|
26 |
## Training and evaluation data
|
27 |
|
28 |
-
|
29 |
|
30 |
## Training procedure
|
31 |
|
@@ -35,14 +63,8 @@ The following hyperparameters were used during training:
|
|
35 |
- learning_rate: 0.0002
|
36 |
- train_batch_size: 8
|
37 |
- eval_batch_size: 8
|
38 |
-
- seed: 42
|
39 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
- lr_scheduler_type: cosine
|
41 |
-
- training_steps: 250
|
42 |
-
|
43 |
-
### Training results
|
44 |
-
|
45 |
-
|
46 |
|
47 |
### Framework versions
|
48 |
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
base_model: TheBloke/Xwin-LM-7B-V0.1-GPTQ
|
|
|
|
|
4 |
model-index:
|
5 |
- name: cleante
|
6 |
results: []
|
7 |
---
|
8 |
|
9 |
+
# Cleante
|
|
|
10 |
|
11 |
+
Cleante is a fine-tuned model, based on a pre-trained [7B](https://huggingface.co/TheBloke/Xwin-LM-7B-V0.1-GPTQ) model.
|
12 |
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
17 |
+
|
18 |
+
model_name = "guillaumephd/cleante"
|
19 |
+
|
20 |
+
# Load the model and tokenizer
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
|
24 |
+
# Define the text generation pipeline
|
25 |
+
generator = pipeline(
|
26 |
+
"text-generation",
|
27 |
+
model=model,
|
28 |
+
tokenizer=tokenizer,
|
29 |
+
device=0 # Use GPU if available please
|
30 |
+
)
|
31 |
+
|
32 |
+
# Generate text using the Cleante model
|
33 |
+
prompt = "###Human: What's your nickname, assistant? ###Assistant: "
|
34 |
+
output = generator(prompt, max_length=100, do_sample=True, temperature=0.5, repetition_penalty=1.2,)
|
35 |
+
|
36 |
+
# Print the generated text
|
37 |
+
print(output[0]["generated_text"])
|
38 |
+
|
39 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
40 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
41 |
+
|
42 |
+
# The model should output a text that looks like:
|
43 |
+
# "My name is Cléante, and I was trained by Guillaume as a language model."
|
44 |
+
```
|
45 |
|
46 |
## Model description
|
47 |
|
48 |
+
See above.
|
49 |
|
50 |
## Intended uses & limitations
|
51 |
|
52 |
+
Demonstration purpose only.
|
53 |
|
54 |
## Training and evaluation data
|
55 |
|
56 |
+
Personal data.
|
57 |
|
58 |
## Training procedure
|
59 |
|
|
|
63 |
- learning_rate: 0.0002
|
64 |
- train_batch_size: 8
|
65 |
- eval_batch_size: 8
|
|
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: cosine
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
### Framework versions
|
70 |
|