File size: 3,952 Bytes
f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc f4c0a8d 2fa75fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: cc-by-nc-sa-4.0
datasets:
- gtfintechlab/reserve_bank_of_india
language:
- en
metrics:
- accuracy
- f1
- precision
- recall
base_model:
- roberta-base
pipeline_tag: text-classification
library_name: transformers
---
# World of Central Banks Model
**Model Name:** Reserve Bank of India Temporal Classification Model
**Model Type:** Text Classification
**Language:** English
**License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
**Base Model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base)
**Dataset Used for Training:** [gtfintechlab/reserve_bank_of_india](https://huggingface.co/datasets/gtfintechlab/reserve_bank_of_india)
## Model Overview
Reserve Bank of India Temporal Classification Model is a fine-tuned roberta-base model designed to classify text data on **Temporal Classification**. This label is annotated in the reserve_bank_of_india dataset, which focuses on meeting minutes for the Reserve Bank of India.
## Intended Use
This model is intended for researchers and practitioners working on subjective text classification for the Reserve Bank of India, particularly within financial and economic contexts. It is specifically designed to assess the **Temporal Classification** label, aiding in the analysis of subjective content in financial and economic communications.
## How to Use
To utilize this model, load it using the Hugging Face `transformers` library:
```python
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/reserve_bank_of_india", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/reserve_bank_of_india", num_labels=2)
config = AutoConfig.from_pretrained("gtfintechlab/reserve_bank_of_india")
# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")
# Classify Temporal Classification
sentences = [
"[Sentence 1]",
"[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")
print(results)
```
In this script:
- **Tokenizer and Model Loading:**
Loads the pre-trained tokenizer and model from `gtfintechlab/reserve_bank_of_india`.
- **Configuration:**
Loads model configuration parameters, including the number of labels.
- **Pipeline Initialization:**
Initializes a text classification pipeline with the model, tokenizer, and configuration.
- **Classification:**
Labels sentences based on **Temporal Classification**.
Ensure your environment has the necessary dependencies installed.
## Label Interpretation
- **LABEL_0:** Forward-looking; the sentence discusses future economic events or decisions.
- **LABEL_1:** Not forward-looking; the sentence discusses past or current economic events or decisions.
## Training Data
The model was trained on the reserve_bank_of_india dataset, comprising annotated sentences from the Reserve Bank of India meeting minutes, labeled by **Temporal Classification**. The dataset includes training, validation, and test splits.
## Citation
If you use this model in your research, please cite the reserve_bank_of_india:
```bibtex
@article{WCBShahSukhaniPardawala,
title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
year={2025}
}
```
For more details, refer to the [reserve_bank_of_india dataset documentation](https://huggingface.co/gtfintechlab/reserve_bank_of_india).
## Contact
For any reserve_bank_of_india related issues and questions, please contact:
- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu
- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu
- Agam Shah: ashah482[at]gatech[dot]edu
|