Text Classification
Transformers
Safetensors
English
roberta
File size: 4,065 Bytes
47e87ce
758d380
47e87ce
758d380
 
47e87ce
758d380
 
47e87ce
758d380
 
 
 
 
47e87ce
758d380
 
47e87ce
758d380
47e87ce
758d380
 
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
 
47e87ce
758d380
 
 
 
47e87ce
758d380
 
47e87ce
758d380
 
 
 
 
 
47e87ce
758d380
 
47e87ce
758d380
47e87ce
758d380
 
47e87ce
758d380
 
47e87ce
758d380
 
47e87ce
758d380
 
47e87ce
758d380
47e87ce
758d380
47e87ce
813a006
 
 
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
 
 
 
 
 
 
47e87ce
d332e9c
47e87ce
758d380
47e87ce
813a006
47e87ce
758d380
47e87ce
758d380
47e87ce
758d380
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: cc-by-nc-sa-4.0

datasets:
- gtfintechlab/reserve_bank_of_india

language:
- en

metrics:
- accuracy
- f1
- precision
- recall

base_model:
- roberta-base

pipeline_tag: text-classification

library_name: transformers
---

# World of Central Banks Model

**Model Name:** Reserve Bank of India Stance Detection Model

**Model Type:** Text Classification

**Language:** English

**License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)

**Base Model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base)

**Dataset Used for Training:** [gtfintechlab/reserve_bank_of_india](https://huggingface.co/datasets/gtfintechlab/reserve_bank_of_india)

## Model Overview

Reserve Bank of India Stance Detection Model is a fine-tuned roberta-base model designed to classify text data on **Stance Detection**. This label is annotated in the reserve_bank_of_india dataset, which focuses on meeting minutes for the Reserve Bank of India.

## Intended Use

This model is intended for researchers and practitioners working on subjective text classification for the Reserve Bank of India, particularly within financial and economic contexts. It is specifically designed to assess the **Stance Detection** label, aiding in the analysis of subjective content in financial and economic communications.

## How to Use

To utilize this model, load it using the Hugging Face `transformers` library:

```python
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/reserve_bank_of_india", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/reserve_bank_of_india", num_labels=4)
config = AutoConfig.from_pretrained("gtfintechlab/reserve_bank_of_india")

# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")

# Classify Stance Detection
sentences = [
    "[Sentence 1]",
    "[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")

print(results)
```

In this script:

- **Tokenizer and Model Loading:**  
  Loads the pre-trained tokenizer and model from `gtfintechlab/reserve_bank_of_india`.

- **Configuration:**  
  Loads model configuration parameters, including the number of labels.

- **Pipeline Initialization:**  
  Initializes a text classification pipeline with the model, tokenizer, and configuration.

- **Classification:**  
  Labels sentences based on **Stance Detection**.

Ensure your environment has the necessary dependencies installed.

## Label Interpretation

- **LABEL_0:** Neutral; the sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment.
- **LABEL_1:**  Hawkish; the sentnece supports contractionary monetary policy.
- **LABEL_2:** Dovish; the sentence supports expansionary monetary policy.
- **LABEL_3:** Irrelevant; the sentence is not related to monetary policy.

## Training Data

The model was trained on the reserve_bank_of_india dataset, comprising annotated sentences from the Reserve Bank of India meeting minutes, labeled by **Stance Detection**. The dataset includes training, validation, and test splits.

## Citation

If you use this model in your research, please cite the reserve_bank_of_india:

```bibtex
@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}
```

For more details, refer to the [reserve_bank_of_india dataset documentation](https://huggingface.co/datasets/gtfintechlab/reserve_bank_of_india).

## Contact

For any Reserve Bank of India related issues and questions, please contact:

- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

- Agam Shah: ashah482[at]gatech[dot]edu