File size: 3,950 Bytes
1cdf20d
98459bc
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
 
 
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
1cdf20d
1f0e043
 
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
98459bc
1cdf20d
1f0e043
1cdf20d
7096bfa
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
 
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
 
 
 
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
 
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
 
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
 
 
 
 
 
 
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1cdf20d
1f0e043
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: cc-by-4.0

datasets:
- gtfintechlab/WCB

language:
- en

metrics:
- accuracy
- f1
- precision
- recall

base_model:
- roberta-base

pipeline_tag: text-classification

library_name: transformers
---

# World of Central Banks Model

**Model Name:** WCB Temporal Classification Model

**Model Type:** Text Classification

**Language:** English

**License:** [CC-BY 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)

**Base Model:** [RoBERTa](https://huggingface.co/FacebookAI/roberta-base)

**Dataset Used for Training:** [gtfintechlab/all_annotated_sentences_25000](https://huggingface.co/datasets/gtfintechlab/all_annotated_sentences_25000)

## Model Overview

WCB Temporal Classification Model is a fine-tuned RoBERTa-based model designed to classify text data on **Temporal Classification**. This label is annotated in the model_WCB_time_label dataset, which focuses on meeting minutes for the all 25 central banks, listed in the paper _Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications_.

## Intended Use

This model is intended for researchers and practitioners working on subjective text classification, particularly within financial and economic contexts. It is specifically designed to assess the **Temporal Classification** label, aiding in the analysis of subjective content in financial and economic communications.

## How to Use

To utilize this model, load it using the Hugging Face `transformers` library:

```python
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_WCB_time_label", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_WCB_time_label", num_labels=2)
config = AutoConfig.from_pretrained("gtfintechlab/model_WCB_time_label")

# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")

# Classify Temporal Classification
sentences = [
    "[Sentence 1]",
    "[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")

print(results)
```

In this script:

- **Tokenizer and Model Loading:**  
  Loads the pre-trained tokenizer and model from `gtfintechlab/model_WCB_time_label`.

- **Configuration:**  
  Loads model configuration parameters, including the number of labels.

- **Pipeline Initialization:**  
  Initializes a text classification pipeline with the model, tokenizer, and configuration.

- **Classification:**  
  Labels sentences based on **Temporal Classification**.

Ensure your environment has the necessary dependencies installed.

## Label Interpretation

- **LABEL_0:** Forward-looking; the sentence discusses future economic events or decisions.
- **LABEL_1:** Not forward-looking; the sentence discusses past or current economic events or decisions.

## Training Data

The model was trained on the model_WCB_time_label dataset, comprising annotated sentences from 25 central banks, labeled by Temporal Classification. The dataset includes training, validation, and test splits.

## Citation

If you use this model in your research, please cite the model_WCB_time_label:

```bibtex
@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
  year={2025}
}
```

For more details, refer to the [model_WCB_time_label dataset documentation](https://huggingface.co/gtfintechlab/model_WCB_time_label).

## Contact

For any model_WCB_time_label related issues and questions, please contact:

- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu

- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu

- Agam Shah: ashah482[at]gatech[dot]edu