File size: 3,950 Bytes
1cdf20d 98459bc 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 98459bc 1cdf20d 1f0e043 1cdf20d 7096bfa 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 1cdf20d 1f0e043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: cc-by-4.0
datasets:
- gtfintechlab/WCB
language:
- en
metrics:
- accuracy
- f1
- precision
- recall
base_model:
- roberta-base
pipeline_tag: text-classification
library_name: transformers
---
# World of Central Banks Model
**Model Name:** WCB Temporal Classification Model
**Model Type:** Text Classification
**Language:** English
**License:** [CC-BY 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
**Base Model:** [RoBERTa](https://huggingface.co/FacebookAI/roberta-base)
**Dataset Used for Training:** [gtfintechlab/all_annotated_sentences_25000](https://huggingface.co/datasets/gtfintechlab/all_annotated_sentences_25000)
## Model Overview
WCB Temporal Classification Model is a fine-tuned RoBERTa-based model designed to classify text data on **Temporal Classification**. This label is annotated in the model_WCB_time_label dataset, which focuses on meeting minutes for the all 25 central banks, listed in the paper _Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications_.
## Intended Use
This model is intended for researchers and practitioners working on subjective text classification, particularly within financial and economic contexts. It is specifically designed to assess the **Temporal Classification** label, aiding in the analysis of subjective content in financial and economic communications.
## How to Use
To utilize this model, load it using the Hugging Face `transformers` library:
```python
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_WCB_time_label", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_WCB_time_label", num_labels=2)
config = AutoConfig.from_pretrained("gtfintechlab/model_WCB_time_label")
# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")
# Classify Temporal Classification
sentences = [
"[Sentence 1]",
"[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")
print(results)
```
In this script:
- **Tokenizer and Model Loading:**
Loads the pre-trained tokenizer and model from `gtfintechlab/model_WCB_time_label`.
- **Configuration:**
Loads model configuration parameters, including the number of labels.
- **Pipeline Initialization:**
Initializes a text classification pipeline with the model, tokenizer, and configuration.
- **Classification:**
Labels sentences based on **Temporal Classification**.
Ensure your environment has the necessary dependencies installed.
## Label Interpretation
- **LABEL_0:** Forward-looking; the sentence discusses future economic events or decisions.
- **LABEL_1:** Not forward-looking; the sentence discusses past or current economic events or decisions.
## Training Data
The model was trained on the model_WCB_time_label dataset, comprising annotated sentences from 25 central banks, labeled by Temporal Classification. The dataset includes training, validation, and test splits.
## Citation
If you use this model in your research, please cite the model_WCB_time_label:
```bibtex
@article{WCBShahSukhaniPardawala,
title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
year={2025}
}
```
For more details, refer to the [model_WCB_time_label dataset documentation](https://huggingface.co/gtfintechlab/model_WCB_time_label).
## Contact
For any model_WCB_time_label related issues and questions, please contact:
- Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu
- Siddhant Sukhani: ssukhani3[at]gatech[dot]edu
- Agam Shah: ashah482[at]gatech[dot]edu
|