--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ellis-v3-emotion-leadership-multi-label results: [] --- # ellis-v3-emotion-leadership-multi-label This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1095 - Accuracy: 0.9728 - F1: 0.9318 - Precision: 0.9346 - Recall: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1396 | 1.0 | 5910 | 0.1235 | 0.9669 | 0.9169 | 0.9211 | 0.9127 | | 0.1025 | 2.0 | 11820 | 0.1095 | 0.9728 | 0.9318 | 0.9346 | 0.9289 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1