gsl22 commited on
Commit
c429bf0
1 Parent(s): 6dd4fbd

End of training

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: ellis-v3-emotion-leadership-multi-label
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # ellis-v3-emotion-leadership-multi-label
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1095
24
+ - Accuracy: 0.9728
25
+ - F1: 0.9318
26
+ - Precision: 0.9346
27
+ - Recall: 0.9289
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 3
48
+ - eval_batch_size: 3
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 2
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.1396 | 1.0 | 5910 | 0.1235 | 0.9669 | 0.9169 | 0.9211 | 0.9127 |
59
+ | 0.1025 | 2.0 | 11820 | 0.1095 | 0.9728 | 0.9318 | 0.9346 | 0.9289 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.40.0
65
+ - Pytorch 2.2.1+cu121
66
+ - Datasets 2.19.0
67
+ - Tokenizers 0.19.1