Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- wikimedia/wikipedia
|
5 |
+
- custom
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
---
|
10 |
+
|
11 |
+
## Description
|
12 |
+
This is "Lemnos" , a new Instruction Tuned model based on the Llama 2 model architecture.
|
13 |
+
|
14 |
+
It was trained on general wikipedia corpus and then finetuned on a custom instruction dataset.
|
15 |
+
|
16 |
+
It is only for use as an experimental version prior launching a new one which also supports Greek.
|
17 |
+
|
18 |
+
## Usage:
|
19 |
+
|
20 |
+
Prerequisites:
|
21 |
+
|
22 |
+
bitsandbytes-0.43.1
|
23 |
+
|
24 |
+
```python
|
25 |
+
# Upgrade in case bitsandbytes already installed
|
26 |
+
pip install bitsandbytes -U
|
27 |
+
```
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
31 |
+
import torch
|
32 |
+
|
33 |
+
# Specify the model hub
|
34 |
+
hub_model = 'gsar78/Lemnos_it_en_v2'
|
35 |
+
|
36 |
+
# Load the tokenizer
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(hub_model, trust_remote_code=True)
|
38 |
+
|
39 |
+
# Configure the BitsAndBytesConfig for 4-bit quantization
|
40 |
+
bnb_config = BitsAndBytesConfig(
|
41 |
+
load_in_4bit=True,
|
42 |
+
bnb_4bit_quant_type='nf4',
|
43 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
44 |
+
bnb_4bit_use_double_quant=False
|
45 |
+
)
|
46 |
+
|
47 |
+
# Load the model with the specified configuration
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
hub_model,
|
50 |
+
quantization_config=bnb_config,
|
51 |
+
trust_remote_code=True,
|
52 |
+
device_map="auto"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Function to generate text based on a prompt using the Alpaca format
|
56 |
+
def generate_text(prompt, max_length=512):
|
57 |
+
# Format the prompt according to the Alpaca format
|
58 |
+
alpaca_prompt = f"### Instruction:\n{prompt}\n\n### Response:\n"
|
59 |
+
|
60 |
+
# Tokenize the input prompt
|
61 |
+
inputs = tokenizer(alpaca_prompt, return_tensors="pt").to(model.device)
|
62 |
+
|
63 |
+
# Generate text using the model
|
64 |
+
outputs = model.generate(
|
65 |
+
input_ids=inputs['input_ids'],
|
66 |
+
max_length=max_length,
|
67 |
+
num_return_sequences=1,
|
68 |
+
pad_token_id=tokenizer.eos_token_id
|
69 |
+
)
|
70 |
+
|
71 |
+
# Decode the generated tokens to text
|
72 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
73 |
+
|
74 |
+
# Remove the prompt part from the output to get only the response
|
75 |
+
response = generated_text[len(alpaca_prompt):]
|
76 |
+
|
77 |
+
return response
|
78 |
+
|
79 |
+
|
80 |
+
# Example question
|
81 |
+
prompt = "What are the three basic colors?"
|
82 |
+
generated_text = generate_text(prompt)
|
83 |
+
print(generated_text)
|
84 |
+
|
85 |
+
# Output:
|
86 |
+
# Red, blue, and yellow.
|
87 |
+
```
|