archive_classification2 / Example_demo.txt
grohitraj's picture
Upload Example_demo.txt with huggingface_hub
7415262 verified
from transformers import AutoModelForVision2Seq, AutoProcessor
from peft import PeftModel
from PIL import Image
import torch
#LOAD
model = AutoModelForVision2Seq.from_pretrained(
"unsloth/llava-1.5-7b-hf-bnb-4bit",
device_map="auto",
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(model, "grohitraj/archive_classification")
model = model.half() # fix dtype mismatch
processor = AutoProcessor.from_pretrained("grohitraj/archive_classification")
# TEST
image = Image.open("example_from_2019ISIC_data.jpg")
prompt = "<image>\nDescribe about the image for male aged 54:"
inputs = processor(text=prompt, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
#OUTPUT
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
print(processor.tokenizer.decode(outputs[0], skip_special_tokens=True))