--- library_name: transformers license: other base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer metrics: - val accuracy model-index: - name: reward results: [] --- # reward This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the gsm8k_llama3.1-8B_128_1ep dataset. It achieves the following results on the evaluation set: - Loss: 0.2467 - val Accuracy: 0.8810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | val Accuracy | |:-------------:|:------:|:----:|:---------------:|:------------:| | 0.609 | 0.0856 | 5 | 0.4890 | 0.8135 | | 0.3044 | 0.1711 | 10 | 0.2622 | 0.9204 | | 0.3091 | 0.2567 | 15 | 0.1574 | 0.9060 | | 0.2377 | 0.3422 | 20 | 0.2161 | 0.9090 | | 0.2227 | 0.4278 | 25 | 0.2810 | 0.8696 | | 0.3034 | 0.5134 | 30 | 0.2796 | 0.8832 | | 0.2101 | 0.5989 | 35 | 0.2074 | 0.9022 | | 0.2027 | 0.6845 | 40 | 0.1866 | 0.9075 | | 0.2683 | 0.7701 | 45 | 0.2167 | 0.8976 | | 0.1873 | 0.8556 | 50 | 0.2340 | 0.8878 | | 0.2984 | 0.9412 | 55 | 0.2451 | 0.8825 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1