gotzmann commited on
Commit
7361bb3
·
1 Parent(s): dbd65b9
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/loftq
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/loftq",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": "unsloth",
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "up_proj",
26
+ "down_proj",
27
+ "gate_proj",
28
+ "o_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": true
34
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d18cbbeb0dc7a8dd0c8b8e45526170676c9e4240fe59ba8179cfac519cb50090
3
+ size 3313653480
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbff756ccf5eaea8237251d330cd8b8574a64988e76562a9170db5ff8ccd44e5
3
+ size 6627963994
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad5690784fcf7a88220ae6547ccb22f548e9ba01c92127b3bae11ec2be909a27
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d1596adf6e0bf6c40648b8520bbb0f661515f8cce49db90ba8a13ada87e6c6
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '\\n\\n### Human:\\n\\n' + content + '\\n\\n### Assistant:\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-1000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:592f657835aa01c7d0df0937a6528b22d0433203d341fad68abeec075135c251
3
+ size 5112
checkpoint-550/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/loftq
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-550/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/loftq",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": "unsloth",
22
+ "target_modules": [
23
+ "q_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "o_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": true
34
+ }
checkpoint-550/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96827223562967e427ac3bb3a44d1a8abe0ecf9e887822c28dafb3acd86af4fe
3
+ size 3313653480
checkpoint-550/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce17dbc7e6a1ce0fe08c1a3376094710c0b177e3a771916492a9fd67be23de0d
3
+ size 6627963994
checkpoint-550/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e8eb211ed8094cb0ddec0a314704781a148c37abd833ccddaa7203a15f19bdb
3
+ size 14244
checkpoint-550/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901727829828d50aa8d2879e143680d423229ffcf3141c1f096826f5d6d6c5a6
3
+ size 1064
checkpoint-550/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-550/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-550/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '\\n\\n### Human:\\n\\n' + content + '\\n\\n### Assistant:\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-550/trainer_state.json ADDED
@@ -0,0 +1,3871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9784300644874361,
5
+ "eval_steps": 500,
6
+ "global_step": 550,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.45256540179252625,
14
+ "learning_rate": 2.366863905325444e-07,
15
+ "loss": 1.4569,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 0.4529481828212738,
21
+ "learning_rate": 4.733727810650888e-07,
22
+ "loss": 1.3644,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.6197301149368286,
28
+ "learning_rate": 7.100591715976332e-07,
29
+ "loss": 1.4401,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 0.4604271352291107,
35
+ "learning_rate": 9.467455621301776e-07,
36
+ "loss": 1.4268,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01,
41
+ "grad_norm": 0.43845024704933167,
42
+ "learning_rate": 1.183431952662722e-06,
43
+ "loss": 1.3566,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "grad_norm": 0.411244660615921,
49
+ "learning_rate": 1.4201183431952664e-06,
50
+ "loss": 1.3928,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "grad_norm": 0.44185420870780945,
56
+ "learning_rate": 1.656804733727811e-06,
57
+ "loss": 1.3219,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.01,
62
+ "grad_norm": 0.35254159569740295,
63
+ "learning_rate": 1.8934911242603552e-06,
64
+ "loss": 1.2633,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.02,
69
+ "grad_norm": 0.6924590468406677,
70
+ "learning_rate": 2.1301775147929e-06,
71
+ "loss": 1.3981,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.02,
76
+ "grad_norm": 0.35222283005714417,
77
+ "learning_rate": 2.366863905325444e-06,
78
+ "loss": 1.3974,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.02,
83
+ "grad_norm": 0.30887699127197266,
84
+ "learning_rate": 2.603550295857988e-06,
85
+ "loss": 1.3804,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "grad_norm": 0.2868764102458954,
91
+ "learning_rate": 2.840236686390533e-06,
92
+ "loss": 1.3667,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "grad_norm": 0.266529381275177,
98
+ "learning_rate": 3.0769230769230774e-06,
99
+ "loss": 1.3539,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.02,
104
+ "grad_norm": 0.2709053158760071,
105
+ "learning_rate": 3.313609467455622e-06,
106
+ "loss": 1.3328,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.03,
111
+ "grad_norm": 0.2658722698688507,
112
+ "learning_rate": 3.550295857988166e-06,
113
+ "loss": 1.3057,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.03,
118
+ "grad_norm": 0.25174638628959656,
119
+ "learning_rate": 3.7869822485207104e-06,
120
+ "loss": 1.3251,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.03,
125
+ "grad_norm": 0.3282093405723572,
126
+ "learning_rate": 4.023668639053255e-06,
127
+ "loss": 1.3731,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "grad_norm": 0.2421874701976776,
133
+ "learning_rate": 4.2603550295858e-06,
134
+ "loss": 1.3182,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "grad_norm": 0.2390267550945282,
140
+ "learning_rate": 4.497041420118343e-06,
141
+ "loss": 1.3427,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.04,
146
+ "grad_norm": 0.2561015486717224,
147
+ "learning_rate": 4.733727810650888e-06,
148
+ "loss": 1.2169,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.04,
153
+ "grad_norm": 0.2676621079444885,
154
+ "learning_rate": 4.970414201183432e-06,
155
+ "loss": 1.281,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.04,
160
+ "grad_norm": 0.26723212003707886,
161
+ "learning_rate": 5.207100591715976e-06,
162
+ "loss": 1.315,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.04,
167
+ "grad_norm": 0.25090569257736206,
168
+ "learning_rate": 5.443786982248521e-06,
169
+ "loss": 1.3735,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "grad_norm": 0.23309403657913208,
175
+ "learning_rate": 5.680473372781066e-06,
176
+ "loss": 1.4455,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "grad_norm": 0.22344529628753662,
182
+ "learning_rate": 5.91715976331361e-06,
183
+ "loss": 1.2653,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.05,
188
+ "grad_norm": 0.2396487593650818,
189
+ "learning_rate": 6.153846153846155e-06,
190
+ "loss": 1.2975,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.05,
195
+ "grad_norm": 0.20989473164081573,
196
+ "learning_rate": 6.3905325443786995e-06,
197
+ "loss": 1.2818,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.05,
202
+ "grad_norm": 0.25289615988731384,
203
+ "learning_rate": 6.627218934911244e-06,
204
+ "loss": 1.3461,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.05,
209
+ "grad_norm": 0.21861045062541962,
210
+ "learning_rate": 6.863905325443787e-06,
211
+ "loss": 1.2251,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05,
216
+ "grad_norm": 0.34595948457717896,
217
+ "learning_rate": 7.100591715976332e-06,
218
+ "loss": 1.3674,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "grad_norm": 0.22662296891212463,
224
+ "learning_rate": 7.337278106508876e-06,
225
+ "loss": 1.3098,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.06,
230
+ "grad_norm": 0.23772552609443665,
231
+ "learning_rate": 7.573964497041421e-06,
232
+ "loss": 1.3131,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.06,
237
+ "grad_norm": 0.2229236513376236,
238
+ "learning_rate": 7.810650887573965e-06,
239
+ "loss": 1.2146,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.06,
244
+ "grad_norm": 0.2346654236316681,
245
+ "learning_rate": 8.04733727810651e-06,
246
+ "loss": 1.2461,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.06,
251
+ "grad_norm": 0.239919513463974,
252
+ "learning_rate": 8.284023668639054e-06,
253
+ "loss": 1.3061,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.06,
258
+ "grad_norm": 0.28290900588035583,
259
+ "learning_rate": 8.5207100591716e-06,
260
+ "loss": 1.3061,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.07,
265
+ "grad_norm": 0.24613362550735474,
266
+ "learning_rate": 8.757396449704143e-06,
267
+ "loss": 1.3081,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.07,
272
+ "grad_norm": 0.2197539210319519,
273
+ "learning_rate": 8.994082840236687e-06,
274
+ "loss": 1.314,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.07,
279
+ "grad_norm": 0.22429563105106354,
280
+ "learning_rate": 9.230769230769232e-06,
281
+ "loss": 1.3043,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.07,
286
+ "grad_norm": 0.22450979053974152,
287
+ "learning_rate": 9.467455621301776e-06,
288
+ "loss": 1.2923,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.07,
293
+ "grad_norm": 0.27412596344947815,
294
+ "learning_rate": 9.70414201183432e-06,
295
+ "loss": 1.3158,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.07,
300
+ "grad_norm": 0.23781456053256989,
301
+ "learning_rate": 9.940828402366864e-06,
302
+ "loss": 1.2986,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.08,
307
+ "grad_norm": 0.21080109477043152,
308
+ "learning_rate": 1.017751479289941e-05,
309
+ "loss": 1.309,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.08,
314
+ "grad_norm": 0.22735567390918732,
315
+ "learning_rate": 1.0414201183431953e-05,
316
+ "loss": 1.2832,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "grad_norm": 0.22945533692836761,
322
+ "learning_rate": 1.0650887573964498e-05,
323
+ "loss": 1.277,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.08,
328
+ "grad_norm": 0.22165744006633759,
329
+ "learning_rate": 1.0887573964497042e-05,
330
+ "loss": 1.2381,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.08,
335
+ "grad_norm": 0.23516800999641418,
336
+ "learning_rate": 1.1124260355029586e-05,
337
+ "loss": 1.2913,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "grad_norm": 0.19824980199337006,
343
+ "learning_rate": 1.1360946745562131e-05,
344
+ "loss": 1.1926,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.09,
349
+ "grad_norm": 0.3040119707584381,
350
+ "learning_rate": 1.1597633136094675e-05,
351
+ "loss": 1.3153,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.09,
356
+ "grad_norm": 0.2223094254732132,
357
+ "learning_rate": 1.183431952662722e-05,
358
+ "loss": 1.2184,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.09,
363
+ "grad_norm": 0.2515048682689667,
364
+ "learning_rate": 1.2071005917159764e-05,
365
+ "loss": 1.336,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.09,
370
+ "grad_norm": 0.23539452254772186,
371
+ "learning_rate": 1.230769230769231e-05,
372
+ "loss": 1.4118,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.09,
377
+ "grad_norm": 0.23905791342258453,
378
+ "learning_rate": 1.2544378698224854e-05,
379
+ "loss": 1.331,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.1,
384
+ "grad_norm": 0.2439602166414261,
385
+ "learning_rate": 1.2781065088757399e-05,
386
+ "loss": 1.3149,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "grad_norm": 0.22920997440814972,
392
+ "learning_rate": 1.3017751479289941e-05,
393
+ "loss": 1.2606,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1,
398
+ "grad_norm": 0.2133115828037262,
399
+ "learning_rate": 1.3254437869822488e-05,
400
+ "loss": 1.3365,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1,
405
+ "grad_norm": 0.2142357975244522,
406
+ "learning_rate": 1.349112426035503e-05,
407
+ "loss": 1.3224,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1,
412
+ "grad_norm": 0.20909257233142853,
413
+ "learning_rate": 1.3727810650887574e-05,
414
+ "loss": 1.2912,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.1,
419
+ "grad_norm": 0.23404663801193237,
420
+ "learning_rate": 1.396449704142012e-05,
421
+ "loss": 1.3027,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.11,
426
+ "grad_norm": 0.21893072128295898,
427
+ "learning_rate": 1.4201183431952663e-05,
428
+ "loss": 1.2553,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "grad_norm": 0.22096726298332214,
434
+ "learning_rate": 1.4437869822485209e-05,
435
+ "loss": 1.281,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.11,
440
+ "grad_norm": 1.081170916557312,
441
+ "learning_rate": 1.4674556213017752e-05,
442
+ "loss": 1.2884,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.11,
447
+ "grad_norm": 0.22385230660438538,
448
+ "learning_rate": 1.4911242603550298e-05,
449
+ "loss": 1.2623,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.11,
454
+ "grad_norm": 0.23298712074756622,
455
+ "learning_rate": 1.5147928994082842e-05,
456
+ "loss": 1.2821,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.12,
461
+ "grad_norm": 0.3878341615200043,
462
+ "learning_rate": 1.5384615384615387e-05,
463
+ "loss": 1.2506,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.12,
468
+ "grad_norm": 0.22243380546569824,
469
+ "learning_rate": 1.562130177514793e-05,
470
+ "loss": 1.2227,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.12,
475
+ "grad_norm": 0.2637002468109131,
476
+ "learning_rate": 1.5857988165680475e-05,
477
+ "loss": 1.2881,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.12,
482
+ "grad_norm": 0.2298763245344162,
483
+ "learning_rate": 1.609467455621302e-05,
484
+ "loss": 1.3599,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.12,
489
+ "grad_norm": 0.2115241140127182,
490
+ "learning_rate": 1.6331360946745562e-05,
491
+ "loss": 1.1884,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.12,
496
+ "grad_norm": 0.2874203026294708,
497
+ "learning_rate": 1.6568047337278108e-05,
498
+ "loss": 1.3397,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.13,
503
+ "grad_norm": 0.22124260663986206,
504
+ "learning_rate": 1.6804733727810653e-05,
505
+ "loss": 1.3417,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.13,
510
+ "grad_norm": 0.2512863874435425,
511
+ "learning_rate": 1.70414201183432e-05,
512
+ "loss": 1.2949,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.13,
517
+ "grad_norm": 0.3238716423511505,
518
+ "learning_rate": 1.727810650887574e-05,
519
+ "loss": 1.2081,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.13,
524
+ "grad_norm": 0.20584481954574585,
525
+ "learning_rate": 1.7514792899408286e-05,
526
+ "loss": 1.2029,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.13,
531
+ "grad_norm": 0.21194683015346527,
532
+ "learning_rate": 1.7751479289940828e-05,
533
+ "loss": 1.2889,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.14,
538
+ "grad_norm": 0.21375629305839539,
539
+ "learning_rate": 1.7988165680473374e-05,
540
+ "loss": 1.1978,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.14,
545
+ "grad_norm": 0.3396347463130951,
546
+ "learning_rate": 1.822485207100592e-05,
547
+ "loss": 1.2245,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.14,
552
+ "grad_norm": 0.22037793695926666,
553
+ "learning_rate": 1.8461538461538465e-05,
554
+ "loss": 1.2168,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.14,
559
+ "grad_norm": 0.20697161555290222,
560
+ "learning_rate": 1.8698224852071007e-05,
561
+ "loss": 1.28,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.14,
566
+ "grad_norm": 0.22741861641407013,
567
+ "learning_rate": 1.8934911242603552e-05,
568
+ "loss": 1.2906,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.14,
573
+ "grad_norm": 0.22307828068733215,
574
+ "learning_rate": 1.9171597633136098e-05,
575
+ "loss": 1.2696,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.15,
580
+ "grad_norm": 0.20539595186710358,
581
+ "learning_rate": 1.940828402366864e-05,
582
+ "loss": 1.2793,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.15,
587
+ "grad_norm": 0.35372307896614075,
588
+ "learning_rate": 1.9644970414201185e-05,
589
+ "loss": 1.2929,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.15,
594
+ "grad_norm": 0.22638989984989166,
595
+ "learning_rate": 1.9881656804733727e-05,
596
+ "loss": 1.3448,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.15,
601
+ "grad_norm": 0.23473680019378662,
602
+ "learning_rate": 2.0118343195266276e-05,
603
+ "loss": 1.4049,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.15,
608
+ "grad_norm": 0.40462109446525574,
609
+ "learning_rate": 2.035502958579882e-05,
610
+ "loss": 1.2063,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.15,
615
+ "grad_norm": 0.5088987946510315,
616
+ "learning_rate": 2.059171597633136e-05,
617
+ "loss": 1.3173,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.16,
622
+ "grad_norm": 0.2960086464881897,
623
+ "learning_rate": 2.0828402366863906e-05,
624
+ "loss": 1.1658,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.16,
629
+ "grad_norm": 0.18364708125591278,
630
+ "learning_rate": 2.106508875739645e-05,
631
+ "loss": 1.2131,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.16,
636
+ "grad_norm": 0.20984740555286407,
637
+ "learning_rate": 2.1301775147928997e-05,
638
+ "loss": 1.2959,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.16,
643
+ "grad_norm": 0.23264534771442413,
644
+ "learning_rate": 2.153846153846154e-05,
645
+ "loss": 1.3718,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.16,
650
+ "grad_norm": 0.18781857192516327,
651
+ "learning_rate": 2.1775147928994084e-05,
652
+ "loss": 1.2442,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.17,
657
+ "grad_norm": 0.21347913146018982,
658
+ "learning_rate": 2.201183431952663e-05,
659
+ "loss": 1.2354,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.17,
664
+ "grad_norm": 0.19755306839942932,
665
+ "learning_rate": 2.224852071005917e-05,
666
+ "loss": 1.21,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.17,
671
+ "grad_norm": 0.6877259612083435,
672
+ "learning_rate": 2.2485207100591717e-05,
673
+ "loss": 1.2694,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.17,
678
+ "grad_norm": 0.21010373532772064,
679
+ "learning_rate": 2.2721893491124263e-05,
680
+ "loss": 1.2075,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.17,
685
+ "grad_norm": 0.18228934705257416,
686
+ "learning_rate": 2.2958579881656808e-05,
687
+ "loss": 1.2062,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.17,
692
+ "grad_norm": 0.2007497102022171,
693
+ "learning_rate": 2.319526627218935e-05,
694
+ "loss": 1.2616,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.18,
699
+ "grad_norm": 0.21043969690799713,
700
+ "learning_rate": 2.3431952662721896e-05,
701
+ "loss": 1.2297,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.18,
706
+ "grad_norm": 0.19528649747371674,
707
+ "learning_rate": 2.366863905325444e-05,
708
+ "loss": 1.2951,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.18,
713
+ "grad_norm": 0.2004949301481247,
714
+ "learning_rate": 2.3905325443786986e-05,
715
+ "loss": 1.3297,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.18,
720
+ "grad_norm": 0.18860860168933868,
721
+ "learning_rate": 2.414201183431953e-05,
722
+ "loss": 1.2922,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.18,
727
+ "grad_norm": 0.19460582733154297,
728
+ "learning_rate": 2.4378698224852074e-05,
729
+ "loss": 1.2539,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.19,
734
+ "grad_norm": 0.23081618547439575,
735
+ "learning_rate": 2.461538461538462e-05,
736
+ "loss": 1.3242,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.19,
741
+ "grad_norm": 0.18269965052604675,
742
+ "learning_rate": 2.485207100591716e-05,
743
+ "loss": 1.2574,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.19,
748
+ "grad_norm": 0.1838914453983307,
749
+ "learning_rate": 2.5088757396449707e-05,
750
+ "loss": 1.282,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.19,
755
+ "grad_norm": 0.19195106625556946,
756
+ "learning_rate": 2.5325443786982252e-05,
757
+ "loss": 1.3306,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.19,
762
+ "grad_norm": 0.18179951608181,
763
+ "learning_rate": 2.5562130177514798e-05,
764
+ "loss": 1.2826,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.19,
769
+ "grad_norm": 0.18123595416545868,
770
+ "learning_rate": 2.5798816568047337e-05,
771
+ "loss": 1.1557,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.2,
776
+ "grad_norm": 0.17565734684467316,
777
+ "learning_rate": 2.6035502958579882e-05,
778
+ "loss": 1.2967,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.2,
783
+ "grad_norm": 0.17343786358833313,
784
+ "learning_rate": 2.6272189349112428e-05,
785
+ "loss": 1.2091,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.2,
790
+ "grad_norm": 0.18770839273929596,
791
+ "learning_rate": 2.6508875739644976e-05,
792
+ "loss": 1.2598,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.2,
797
+ "grad_norm": 0.18156233429908752,
798
+ "learning_rate": 2.6745562130177515e-05,
799
+ "loss": 1.4203,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.2,
804
+ "grad_norm": 0.17836841940879822,
805
+ "learning_rate": 2.698224852071006e-05,
806
+ "loss": 1.3028,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.2,
811
+ "grad_norm": 0.18834306299686432,
812
+ "learning_rate": 2.7218934911242606e-05,
813
+ "loss": 1.3476,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.21,
818
+ "grad_norm": 0.17323559522628784,
819
+ "learning_rate": 2.7455621301775148e-05,
820
+ "loss": 1.2906,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.21,
825
+ "grad_norm": 0.17727844417095184,
826
+ "learning_rate": 2.7692307692307694e-05,
827
+ "loss": 1.2975,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.21,
832
+ "grad_norm": 0.17880651354789734,
833
+ "learning_rate": 2.792899408284024e-05,
834
+ "loss": 1.2702,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.21,
839
+ "grad_norm": 0.16582255065441132,
840
+ "learning_rate": 2.8165680473372784e-05,
841
+ "loss": 1.1503,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.21,
846
+ "grad_norm": 0.17850655317306519,
847
+ "learning_rate": 2.8402366863905327e-05,
848
+ "loss": 1.2997,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.22,
853
+ "grad_norm": 0.18331943452358246,
854
+ "learning_rate": 2.8639053254437872e-05,
855
+ "loss": 1.3637,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.22,
860
+ "grad_norm": 0.1787254512310028,
861
+ "learning_rate": 2.8875739644970417e-05,
862
+ "loss": 1.3294,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.22,
867
+ "grad_norm": 0.1663455218076706,
868
+ "learning_rate": 2.9112426035502963e-05,
869
+ "loss": 1.2493,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.22,
874
+ "grad_norm": 0.18791569769382477,
875
+ "learning_rate": 2.9349112426035505e-05,
876
+ "loss": 1.3098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.22,
881
+ "grad_norm": 0.20719879865646362,
882
+ "learning_rate": 2.958579881656805e-05,
883
+ "loss": 1.2525,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.22,
888
+ "grad_norm": 0.18029142916202545,
889
+ "learning_rate": 2.9822485207100596e-05,
890
+ "loss": 1.2253,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.23,
895
+ "grad_norm": 0.1783473640680313,
896
+ "learning_rate": 3.0059171597633138e-05,
897
+ "loss": 1.2442,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.23,
902
+ "grad_norm": 0.17132772505283356,
903
+ "learning_rate": 3.0295857988165683e-05,
904
+ "loss": 1.2608,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.23,
909
+ "grad_norm": 0.18309135735034943,
910
+ "learning_rate": 3.0532544378698226e-05,
911
+ "loss": 1.2042,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.23,
916
+ "grad_norm": 0.16952255368232727,
917
+ "learning_rate": 3.0769230769230774e-05,
918
+ "loss": 1.1857,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.23,
923
+ "grad_norm": 0.17200875282287598,
924
+ "learning_rate": 3.1005917159763316e-05,
925
+ "loss": 1.3099,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.23,
930
+ "grad_norm": 0.1655825823545456,
931
+ "learning_rate": 3.124260355029586e-05,
932
+ "loss": 1.1104,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.24,
937
+ "grad_norm": 1.1321977376937866,
938
+ "learning_rate": 3.147928994082841e-05,
939
+ "loss": 1.2752,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.24,
944
+ "grad_norm": 0.17164289951324463,
945
+ "learning_rate": 3.171597633136095e-05,
946
+ "loss": 1.3419,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.24,
951
+ "grad_norm": 0.1645852029323578,
952
+ "learning_rate": 3.195266272189349e-05,
953
+ "loss": 1.277,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.24,
958
+ "grad_norm": 0.18138067424297333,
959
+ "learning_rate": 3.218934911242604e-05,
960
+ "loss": 1.3829,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.24,
965
+ "grad_norm": 0.17257159948349,
966
+ "learning_rate": 3.242603550295858e-05,
967
+ "loss": 1.2158,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.25,
972
+ "grad_norm": 0.17873308062553406,
973
+ "learning_rate": 3.2662721893491124e-05,
974
+ "loss": 1.3722,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.25,
979
+ "grad_norm": 0.18967239558696747,
980
+ "learning_rate": 3.289940828402367e-05,
981
+ "loss": 1.3189,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.25,
986
+ "grad_norm": 0.17044439911842346,
987
+ "learning_rate": 3.3136094674556215e-05,
988
+ "loss": 1.2405,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.25,
993
+ "grad_norm": 0.17479783296585083,
994
+ "learning_rate": 3.3372781065088764e-05,
995
+ "loss": 1.2111,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.25,
1000
+ "grad_norm": 0.17302677035331726,
1001
+ "learning_rate": 3.3609467455621306e-05,
1002
+ "loss": 1.2284,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.25,
1007
+ "grad_norm": 0.195891872048378,
1008
+ "learning_rate": 3.384615384615385e-05,
1009
+ "loss": 1.2887,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.26,
1014
+ "grad_norm": 0.18167690932750702,
1015
+ "learning_rate": 3.40828402366864e-05,
1016
+ "loss": 1.2402,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.26,
1021
+ "grad_norm": 0.17309151589870453,
1022
+ "learning_rate": 3.431952662721894e-05,
1023
+ "loss": 1.2908,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.26,
1028
+ "grad_norm": 0.16847188770771027,
1029
+ "learning_rate": 3.455621301775148e-05,
1030
+ "loss": 1.232,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.26,
1035
+ "grad_norm": 0.15291230380535126,
1036
+ "learning_rate": 3.4792899408284023e-05,
1037
+ "loss": 1.2175,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.26,
1042
+ "grad_norm": 0.17138057947158813,
1043
+ "learning_rate": 3.502958579881657e-05,
1044
+ "loss": 1.2425,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.27,
1049
+ "grad_norm": 0.1690928041934967,
1050
+ "learning_rate": 3.5266272189349114e-05,
1051
+ "loss": 1.2559,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.27,
1056
+ "grad_norm": 0.16478750109672546,
1057
+ "learning_rate": 3.5502958579881656e-05,
1058
+ "loss": 1.2275,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.27,
1063
+ "grad_norm": 0.16980737447738647,
1064
+ "learning_rate": 3.5739644970414205e-05,
1065
+ "loss": 1.2615,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.27,
1070
+ "grad_norm": 0.18318678438663483,
1071
+ "learning_rate": 3.597633136094675e-05,
1072
+ "loss": 1.1944,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.27,
1077
+ "grad_norm": 0.16001984477043152,
1078
+ "learning_rate": 3.621301775147929e-05,
1079
+ "loss": 1.2195,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.27,
1084
+ "grad_norm": 0.16806018352508545,
1085
+ "learning_rate": 3.644970414201184e-05,
1086
+ "loss": 1.2447,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.28,
1091
+ "grad_norm": 0.165884330868721,
1092
+ "learning_rate": 3.668639053254438e-05,
1093
+ "loss": 1.2678,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.28,
1098
+ "grad_norm": 0.1888454109430313,
1099
+ "learning_rate": 3.692307692307693e-05,
1100
+ "loss": 1.1565,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.28,
1105
+ "grad_norm": 0.17629367113113403,
1106
+ "learning_rate": 3.715976331360947e-05,
1107
+ "loss": 1.2655,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.28,
1112
+ "grad_norm": 0.15656840801239014,
1113
+ "learning_rate": 3.739644970414201e-05,
1114
+ "loss": 1.255,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.28,
1119
+ "grad_norm": 0.1642792522907257,
1120
+ "learning_rate": 3.763313609467456e-05,
1121
+ "loss": 1.2761,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.28,
1126
+ "grad_norm": 0.1748429834842682,
1127
+ "learning_rate": 3.7869822485207104e-05,
1128
+ "loss": 1.2886,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.29,
1133
+ "grad_norm": 0.18779656291007996,
1134
+ "learning_rate": 3.8106508875739646e-05,
1135
+ "loss": 1.329,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.29,
1140
+ "grad_norm": 0.1711338311433792,
1141
+ "learning_rate": 3.8343195266272195e-05,
1142
+ "loss": 1.217,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.29,
1147
+ "grad_norm": 0.2066163867712021,
1148
+ "learning_rate": 3.857988165680474e-05,
1149
+ "loss": 1.2237,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.29,
1154
+ "grad_norm": 0.1761993169784546,
1155
+ "learning_rate": 3.881656804733728e-05,
1156
+ "loss": 1.3078,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.29,
1161
+ "grad_norm": 0.1665651649236679,
1162
+ "learning_rate": 3.905325443786983e-05,
1163
+ "loss": 1.282,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.3,
1168
+ "grad_norm": 0.16825369000434875,
1169
+ "learning_rate": 3.928994082840237e-05,
1170
+ "loss": 1.2816,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.3,
1175
+ "grad_norm": 0.1534135639667511,
1176
+ "learning_rate": 3.952662721893492e-05,
1177
+ "loss": 1.1642,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.3,
1182
+ "grad_norm": 0.16484308242797852,
1183
+ "learning_rate": 3.9763313609467454e-05,
1184
+ "loss": 1.2835,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.3,
1189
+ "grad_norm": 0.1610719859600067,
1190
+ "learning_rate": 4e-05,
1191
+ "loss": 1.3346,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.3,
1196
+ "grad_norm": 0.1510305106639862,
1197
+ "learning_rate": 3.999995711272738e-05,
1198
+ "loss": 1.2378,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.3,
1203
+ "grad_norm": 0.15529176592826843,
1204
+ "learning_rate": 3.9999828451093426e-05,
1205
+ "loss": 1.2229,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.31,
1210
+ "grad_norm": 0.1719708889722824,
1211
+ "learning_rate": 3.999961401564995e-05,
1212
+ "loss": 1.384,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.31,
1217
+ "grad_norm": 0.1716768890619278,
1218
+ "learning_rate": 3.999931380731659e-05,
1219
+ "loss": 1.2835,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.31,
1224
+ "grad_norm": 0.174550399184227,
1225
+ "learning_rate": 3.999892782738088e-05,
1226
+ "loss": 1.271,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.31,
1231
+ "grad_norm": 0.15711328387260437,
1232
+ "learning_rate": 3.999845607749817e-05,
1233
+ "loss": 1.2114,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.31,
1238
+ "grad_norm": 0.15875279903411865,
1239
+ "learning_rate": 3.999789855969166e-05,
1240
+ "loss": 1.2691,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.31,
1245
+ "grad_norm": 0.15693986415863037,
1246
+ "learning_rate": 3.999725527635241e-05,
1247
+ "loss": 1.2357,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.32,
1252
+ "grad_norm": 0.16238917410373688,
1253
+ "learning_rate": 3.999652623023927e-05,
1254
+ "loss": 1.1509,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.32,
1259
+ "grad_norm": 0.1467331349849701,
1260
+ "learning_rate": 3.9995711424478924e-05,
1261
+ "loss": 1.1546,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.32,
1266
+ "grad_norm": 0.16689354181289673,
1267
+ "learning_rate": 3.999481086256586e-05,
1268
+ "loss": 1.3141,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.32,
1273
+ "grad_norm": 0.16529196500778198,
1274
+ "learning_rate": 3.999382454836233e-05,
1275
+ "loss": 1.2067,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.32,
1280
+ "grad_norm": 0.15258309245109558,
1281
+ "learning_rate": 3.999275248609838e-05,
1282
+ "loss": 1.155,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.33,
1287
+ "grad_norm": 0.1617356687784195,
1288
+ "learning_rate": 3.9991594680371777e-05,
1289
+ "loss": 1.2189,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.33,
1294
+ "grad_norm": 0.15302208065986633,
1295
+ "learning_rate": 3.999035113614805e-05,
1296
+ "loss": 1.1984,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.33,
1301
+ "grad_norm": 0.20816399157047272,
1302
+ "learning_rate": 3.998902185876041e-05,
1303
+ "loss": 1.2542,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.33,
1308
+ "grad_norm": 0.16472405195236206,
1309
+ "learning_rate": 3.998760685390977e-05,
1310
+ "loss": 1.2054,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.33,
1315
+ "grad_norm": 0.1601923108100891,
1316
+ "learning_rate": 3.9986106127664694e-05,
1317
+ "loss": 1.2957,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.33,
1322
+ "grad_norm": 0.15352420508861542,
1323
+ "learning_rate": 3.99845196864614e-05,
1324
+ "loss": 1.2051,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.34,
1329
+ "grad_norm": 0.17676082253456116,
1330
+ "learning_rate": 3.998284753710369e-05,
1331
+ "loss": 1.2261,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.34,
1336
+ "grad_norm": 0.1508205682039261,
1337
+ "learning_rate": 3.998108968676296e-05,
1338
+ "loss": 1.2634,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.34,
1343
+ "grad_norm": 0.1601751744747162,
1344
+ "learning_rate": 3.997924614297815e-05,
1345
+ "loss": 1.2006,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.34,
1350
+ "grad_norm": 0.2529548108577728,
1351
+ "learning_rate": 3.997731691365572e-05,
1352
+ "loss": 1.3508,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.34,
1357
+ "grad_norm": 0.17672798037528992,
1358
+ "learning_rate": 3.99753020070696e-05,
1359
+ "loss": 1.2879,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.35,
1364
+ "grad_norm": 0.15853144228458405,
1365
+ "learning_rate": 3.997320143186119e-05,
1366
+ "loss": 1.2504,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.35,
1371
+ "grad_norm": 0.14928783476352692,
1372
+ "learning_rate": 3.997101519703927e-05,
1373
+ "loss": 1.1055,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.35,
1378
+ "grad_norm": 0.17145495116710663,
1379
+ "learning_rate": 3.9968743311980015e-05,
1380
+ "loss": 1.2717,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.35,
1385
+ "grad_norm": 0.15577386319637299,
1386
+ "learning_rate": 3.996638578642691e-05,
1387
+ "loss": 1.2165,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.35,
1392
+ "grad_norm": 0.18255503475666046,
1393
+ "learning_rate": 3.996394263049074e-05,
1394
+ "loss": 1.2062,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.35,
1399
+ "grad_norm": 0.17394264042377472,
1400
+ "learning_rate": 3.996141385464955e-05,
1401
+ "loss": 1.2499,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.36,
1406
+ "grad_norm": 0.20845308899879456,
1407
+ "learning_rate": 3.9958799469748547e-05,
1408
+ "loss": 1.353,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.36,
1413
+ "grad_norm": 0.16469226777553558,
1414
+ "learning_rate": 3.9956099487000135e-05,
1415
+ "loss": 1.2376,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.36,
1420
+ "grad_norm": 0.16727469861507416,
1421
+ "learning_rate": 3.995331391798379e-05,
1422
+ "loss": 1.2536,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.36,
1427
+ "grad_norm": 0.1603512018918991,
1428
+ "learning_rate": 3.9950442774646065e-05,
1429
+ "loss": 1.2753,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.36,
1434
+ "grad_norm": 0.18711543083190918,
1435
+ "learning_rate": 3.994748606930051e-05,
1436
+ "loss": 1.2629,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.36,
1441
+ "grad_norm": 0.1531892865896225,
1442
+ "learning_rate": 3.994444381462763e-05,
1443
+ "loss": 1.2333,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.37,
1448
+ "grad_norm": 0.17141614854335785,
1449
+ "learning_rate": 3.994131602367481e-05,
1450
+ "loss": 1.2556,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.37,
1455
+ "grad_norm": 0.17776872217655182,
1456
+ "learning_rate": 3.9938102709856316e-05,
1457
+ "loss": 1.1875,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.37,
1462
+ "grad_norm": 0.15654616057872772,
1463
+ "learning_rate": 3.9934803886953153e-05,
1464
+ "loss": 1.281,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.37,
1469
+ "grad_norm": 0.16635853052139282,
1470
+ "learning_rate": 3.993141956911309e-05,
1471
+ "loss": 1.1977,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.37,
1476
+ "grad_norm": 0.1581771969795227,
1477
+ "learning_rate": 3.9927949770850535e-05,
1478
+ "loss": 1.2556,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.38,
1483
+ "grad_norm": 0.19136467576026917,
1484
+ "learning_rate": 3.99243945070465e-05,
1485
+ "loss": 1.2549,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.38,
1490
+ "grad_norm": 0.18221412599086761,
1491
+ "learning_rate": 3.992075379294856e-05,
1492
+ "loss": 1.2468,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.38,
1497
+ "grad_norm": 0.1619117110967636,
1498
+ "learning_rate": 3.991702764417073e-05,
1499
+ "loss": 1.2866,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.38,
1504
+ "grad_norm": 0.1579107940196991,
1505
+ "learning_rate": 3.9913216076693446e-05,
1506
+ "loss": 1.2815,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.38,
1511
+ "grad_norm": 0.15225648880004883,
1512
+ "learning_rate": 3.9909319106863485e-05,
1513
+ "loss": 1.1889,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.38,
1518
+ "grad_norm": 0.16033805906772614,
1519
+ "learning_rate": 3.990533675139389e-05,
1520
+ "loss": 1.2241,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.39,
1525
+ "grad_norm": 0.1602856069803238,
1526
+ "learning_rate": 3.990126902736389e-05,
1527
+ "loss": 1.2266,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.39,
1532
+ "grad_norm": 0.1666950285434723,
1533
+ "learning_rate": 3.989711595221886e-05,
1534
+ "loss": 1.2292,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.39,
1539
+ "grad_norm": 0.1629578322172165,
1540
+ "learning_rate": 3.989287754377019e-05,
1541
+ "loss": 1.2544,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.39,
1546
+ "grad_norm": 0.15922550857067108,
1547
+ "learning_rate": 3.988855382019526e-05,
1548
+ "loss": 1.2395,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.39,
1553
+ "grad_norm": 0.1633135825395584,
1554
+ "learning_rate": 3.988414480003735e-05,
1555
+ "loss": 1.3399,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.39,
1560
+ "grad_norm": 0.16409821808338165,
1561
+ "learning_rate": 3.9879650502205537e-05,
1562
+ "loss": 1.1643,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.4,
1567
+ "grad_norm": 0.1624230146408081,
1568
+ "learning_rate": 3.987507094597464e-05,
1569
+ "loss": 1.3067,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.4,
1574
+ "grad_norm": 0.16975589096546173,
1575
+ "learning_rate": 3.9870406150985134e-05,
1576
+ "loss": 1.1727,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.4,
1581
+ "grad_norm": 0.1849404126405716,
1582
+ "learning_rate": 3.986565613724304e-05,
1583
+ "loss": 1.3096,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.4,
1588
+ "grad_norm": 0.18090464174747467,
1589
+ "learning_rate": 3.986082092511988e-05,
1590
+ "loss": 1.2235,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.4,
1595
+ "grad_norm": 0.1610763967037201,
1596
+ "learning_rate": 3.985590053535256e-05,
1597
+ "loss": 1.2425,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.41,
1602
+ "grad_norm": 0.1640045940876007,
1603
+ "learning_rate": 3.9850894989043284e-05,
1604
+ "loss": 1.3407,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.41,
1609
+ "grad_norm": 0.16807672381401062,
1610
+ "learning_rate": 3.9845804307659485e-05,
1611
+ "loss": 1.3529,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.41,
1616
+ "grad_norm": 0.16140711307525635,
1617
+ "learning_rate": 3.984062851303369e-05,
1618
+ "loss": 1.3073,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.41,
1623
+ "grad_norm": 0.15345898270606995,
1624
+ "learning_rate": 3.983536762736349e-05,
1625
+ "loss": 1.2497,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.41,
1630
+ "grad_norm": 0.1554725468158722,
1631
+ "learning_rate": 3.983002167321138e-05,
1632
+ "loss": 1.2908,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.41,
1637
+ "grad_norm": 0.16261020302772522,
1638
+ "learning_rate": 3.98245906735047e-05,
1639
+ "loss": 1.1978,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.42,
1644
+ "grad_norm": 0.15362827479839325,
1645
+ "learning_rate": 3.981907465153552e-05,
1646
+ "loss": 1.1768,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.42,
1651
+ "grad_norm": 0.15314264595508575,
1652
+ "learning_rate": 3.981347363096056e-05,
1653
+ "loss": 1.1572,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.42,
1658
+ "grad_norm": 0.1712978333234787,
1659
+ "learning_rate": 3.980778763580108e-05,
1660
+ "loss": 1.3071,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.42,
1665
+ "grad_norm": 0.15101170539855957,
1666
+ "learning_rate": 3.980201669044274e-05,
1667
+ "loss": 1.1953,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.42,
1672
+ "grad_norm": 0.16669559478759766,
1673
+ "learning_rate": 3.9796160819635566e-05,
1674
+ "loss": 1.3362,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.43,
1679
+ "grad_norm": 0.23853600025177002,
1680
+ "learning_rate": 3.979022004849379e-05,
1681
+ "loss": 1.2309,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.43,
1686
+ "grad_norm": 0.15961961448192596,
1687
+ "learning_rate": 3.9784194402495746e-05,
1688
+ "loss": 1.2157,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.43,
1693
+ "grad_norm": 0.16380910575389862,
1694
+ "learning_rate": 3.977808390748381e-05,
1695
+ "loss": 1.1569,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.43,
1700
+ "grad_norm": 0.17208293080329895,
1701
+ "learning_rate": 3.977188858966421e-05,
1702
+ "loss": 1.349,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.43,
1707
+ "grad_norm": 0.1566724181175232,
1708
+ "learning_rate": 3.976560847560697e-05,
1709
+ "loss": 1.2158,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.43,
1714
+ "grad_norm": 0.1605634242296219,
1715
+ "learning_rate": 3.975924359224581e-05,
1716
+ "loss": 1.167,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.44,
1721
+ "grad_norm": 0.21259568631649017,
1722
+ "learning_rate": 3.9752793966877956e-05,
1723
+ "loss": 1.2877,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.44,
1728
+ "grad_norm": 0.1743762195110321,
1729
+ "learning_rate": 3.97462596271641e-05,
1730
+ "loss": 1.3,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.44,
1735
+ "grad_norm": 0.1705716997385025,
1736
+ "learning_rate": 3.9739640601128255e-05,
1737
+ "loss": 1.2658,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.44,
1742
+ "grad_norm": 0.1837138682603836,
1743
+ "learning_rate": 3.97329369171576e-05,
1744
+ "loss": 1.2626,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.44,
1749
+ "grad_norm": 0.22162184119224548,
1750
+ "learning_rate": 3.9726148604002414e-05,
1751
+ "loss": 1.1911,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.44,
1756
+ "grad_norm": 0.16128268837928772,
1757
+ "learning_rate": 3.9719275690775924e-05,
1758
+ "loss": 1.2447,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.45,
1763
+ "grad_norm": 0.16500110924243927,
1764
+ "learning_rate": 3.971231820695417e-05,
1765
+ "loss": 1.2036,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.45,
1770
+ "grad_norm": 0.16154707968235016,
1771
+ "learning_rate": 3.970527618237592e-05,
1772
+ "loss": 1.1957,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.45,
1777
+ "grad_norm": 0.16126224398612976,
1778
+ "learning_rate": 3.969814964724248e-05,
1779
+ "loss": 1.2647,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.45,
1784
+ "grad_norm": 0.16112996637821198,
1785
+ "learning_rate": 3.969093863211762e-05,
1786
+ "loss": 1.2127,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.45,
1791
+ "grad_norm": 0.1538519561290741,
1792
+ "learning_rate": 3.968364316792743e-05,
1793
+ "loss": 1.1234,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.46,
1798
+ "grad_norm": 0.16396304965019226,
1799
+ "learning_rate": 3.967626328596015e-05,
1800
+ "loss": 1.2309,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.46,
1805
+ "grad_norm": 0.18015865981578827,
1806
+ "learning_rate": 3.966879901786608e-05,
1807
+ "loss": 1.1613,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.46,
1812
+ "grad_norm": 0.16599513590335846,
1813
+ "learning_rate": 3.966125039565745e-05,
1814
+ "loss": 1.2543,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.46,
1819
+ "grad_norm": 0.19396306574344635,
1820
+ "learning_rate": 3.965361745170821e-05,
1821
+ "loss": 1.2597,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.46,
1826
+ "grad_norm": 0.1652296930551529,
1827
+ "learning_rate": 3.964590021875401e-05,
1828
+ "loss": 1.2601,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.46,
1833
+ "grad_norm": 0.15919215977191925,
1834
+ "learning_rate": 3.963809872989193e-05,
1835
+ "loss": 1.1675,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.47,
1840
+ "grad_norm": 0.16900300979614258,
1841
+ "learning_rate": 3.963021301858045e-05,
1842
+ "loss": 1.295,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.47,
1847
+ "grad_norm": 0.18816988170146942,
1848
+ "learning_rate": 3.9622243118639215e-05,
1849
+ "loss": 1.3135,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.47,
1854
+ "grad_norm": 0.17363770306110382,
1855
+ "learning_rate": 3.961418906424897e-05,
1856
+ "loss": 1.3225,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.47,
1861
+ "grad_norm": 0.1609456092119217,
1862
+ "learning_rate": 3.960605088995134e-05,
1863
+ "loss": 1.2022,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.47,
1868
+ "grad_norm": 0.1848209649324417,
1869
+ "learning_rate": 3.959782863064874e-05,
1870
+ "loss": 1.2134,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.47,
1875
+ "grad_norm": 0.1635885089635849,
1876
+ "learning_rate": 3.9589522321604205e-05,
1877
+ "loss": 1.2537,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.48,
1882
+ "grad_norm": 0.21050697565078735,
1883
+ "learning_rate": 3.958113199844123e-05,
1884
+ "loss": 1.3015,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.48,
1889
+ "grad_norm": 0.1821780800819397,
1890
+ "learning_rate": 3.9572657697143614e-05,
1891
+ "loss": 1.1287,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.48,
1896
+ "grad_norm": 0.16301009058952332,
1897
+ "learning_rate": 3.9564099454055325e-05,
1898
+ "loss": 1.2451,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.48,
1903
+ "grad_norm": 0.17613324522972107,
1904
+ "learning_rate": 3.955545730588034e-05,
1905
+ "loss": 1.3656,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.48,
1910
+ "grad_norm": 0.16889138519763947,
1911
+ "learning_rate": 3.954673128968247e-05,
1912
+ "loss": 1.3678,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.49,
1917
+ "grad_norm": 0.16508743166923523,
1918
+ "learning_rate": 3.953792144288523e-05,
1919
+ "loss": 1.3248,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.49,
1924
+ "grad_norm": 0.16305625438690186,
1925
+ "learning_rate": 3.952902780327163e-05,
1926
+ "loss": 1.2358,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.49,
1931
+ "grad_norm": 0.1744881272315979,
1932
+ "learning_rate": 3.9520050408984076e-05,
1933
+ "loss": 1.2405,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.49,
1938
+ "grad_norm": 0.16882789134979248,
1939
+ "learning_rate": 3.951098929852417e-05,
1940
+ "loss": 1.2694,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.49,
1945
+ "grad_norm": 0.15946689248085022,
1946
+ "learning_rate": 3.950184451075252e-05,
1947
+ "loss": 1.2312,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.49,
1952
+ "grad_norm": 0.16837111115455627,
1953
+ "learning_rate": 3.949261608488866e-05,
1954
+ "loss": 1.2121,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.5,
1959
+ "grad_norm": 0.16055358946323395,
1960
+ "learning_rate": 3.948330406051077e-05,
1961
+ "loss": 1.251,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.5,
1966
+ "grad_norm": 0.16870392858982086,
1967
+ "learning_rate": 3.947390847755559e-05,
1968
+ "loss": 1.2926,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.5,
1973
+ "grad_norm": 0.1582109034061432,
1974
+ "learning_rate": 3.94644293763182e-05,
1975
+ "loss": 1.2649,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.5,
1980
+ "grad_norm": 0.19230706989765167,
1981
+ "learning_rate": 3.9454866797451895e-05,
1982
+ "loss": 1.2991,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.5,
1987
+ "grad_norm": 0.15807847678661346,
1988
+ "learning_rate": 3.9445220781967963e-05,
1989
+ "loss": 1.1764,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.51,
1994
+ "grad_norm": 0.1773795485496521,
1995
+ "learning_rate": 3.9435491371235534e-05,
1996
+ "loss": 1.3195,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.51,
2001
+ "grad_norm": 0.16266267001628876,
2002
+ "learning_rate": 3.94256786069814e-05,
2003
+ "loss": 1.2765,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.51,
2008
+ "grad_norm": 0.1656751185655594,
2009
+ "learning_rate": 3.941578253128982e-05,
2010
+ "loss": 1.2727,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.51,
2015
+ "grad_norm": 0.15894421935081482,
2016
+ "learning_rate": 3.940580318660238e-05,
2017
+ "loss": 1.2083,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.51,
2022
+ "grad_norm": 0.16084228456020355,
2023
+ "learning_rate": 3.939574061571775e-05,
2024
+ "loss": 1.232,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.51,
2029
+ "grad_norm": 0.16208983957767487,
2030
+ "learning_rate": 3.938559486179156e-05,
2031
+ "loss": 1.2277,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.52,
2036
+ "grad_norm": 0.16037632524967194,
2037
+ "learning_rate": 3.937536596833618e-05,
2038
+ "loss": 1.1273,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.52,
2043
+ "grad_norm": 0.2040693312883377,
2044
+ "learning_rate": 3.9365053979220555e-05,
2045
+ "loss": 1.2405,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.52,
2050
+ "grad_norm": 0.1898617446422577,
2051
+ "learning_rate": 3.935465893866998e-05,
2052
+ "loss": 1.222,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.52,
2057
+ "grad_norm": 0.16039510071277618,
2058
+ "learning_rate": 3.934418089126595e-05,
2059
+ "loss": 1.2946,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.52,
2064
+ "grad_norm": 0.21441307663917542,
2065
+ "learning_rate": 3.933361988194596e-05,
2066
+ "loss": 1.2268,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.52,
2071
+ "grad_norm": 0.15417777001857758,
2072
+ "learning_rate": 3.9322975956003297e-05,
2073
+ "loss": 1.145,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.53,
2078
+ "grad_norm": 0.16220960021018982,
2079
+ "learning_rate": 3.9312249159086855e-05,
2080
+ "loss": 1.3189,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.53,
2085
+ "grad_norm": 0.1598338782787323,
2086
+ "learning_rate": 3.9301439537200936e-05,
2087
+ "loss": 1.2083,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.53,
2092
+ "grad_norm": 0.18459190428256989,
2093
+ "learning_rate": 3.929054713670506e-05,
2094
+ "loss": 1.2136,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.53,
2099
+ "grad_norm": 0.15777897834777832,
2100
+ "learning_rate": 3.927957200431377e-05,
2101
+ "loss": 1.2017,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.53,
2106
+ "grad_norm": 0.177915558218956,
2107
+ "learning_rate": 3.926851418709641e-05,
2108
+ "loss": 1.3244,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.54,
2113
+ "grad_norm": 0.1588701456785202,
2114
+ "learning_rate": 3.925737373247694e-05,
2115
+ "loss": 1.3037,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.54,
2120
+ "grad_norm": 0.1676599532365799,
2121
+ "learning_rate": 3.9246150688233745e-05,
2122
+ "loss": 1.2729,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.54,
2127
+ "grad_norm": 0.20505991578102112,
2128
+ "learning_rate": 3.923484510249938e-05,
2129
+ "loss": 1.241,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.54,
2134
+ "grad_norm": 0.15723706781864166,
2135
+ "learning_rate": 3.922345702376044e-05,
2136
+ "loss": 1.2241,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.54,
2141
+ "grad_norm": 0.18037424981594086,
2142
+ "learning_rate": 3.921198650085726e-05,
2143
+ "loss": 1.2395,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.54,
2148
+ "grad_norm": 0.16490055620670319,
2149
+ "learning_rate": 3.9200433582983825e-05,
2150
+ "loss": 1.2515,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.55,
2155
+ "grad_norm": 0.16806964576244354,
2156
+ "learning_rate": 3.9188798319687406e-05,
2157
+ "loss": 1.2211,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.55,
2162
+ "grad_norm": 0.1634434014558792,
2163
+ "learning_rate": 3.917708076086851e-05,
2164
+ "loss": 1.298,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.55,
2169
+ "grad_norm": 0.16614285111427307,
2170
+ "learning_rate": 3.916528095678053e-05,
2171
+ "loss": 1.3037,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.55,
2176
+ "grad_norm": 0.18700821697711945,
2177
+ "learning_rate": 3.9153398958029606e-05,
2178
+ "loss": 1.2613,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.55,
2183
+ "grad_norm": 0.16272488236427307,
2184
+ "learning_rate": 3.91414348155744e-05,
2185
+ "loss": 1.2064,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.56,
2190
+ "grad_norm": 0.16149508953094482,
2191
+ "learning_rate": 3.9129388580725855e-05,
2192
+ "loss": 1.2886,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.56,
2197
+ "grad_norm": 0.1734437793493271,
2198
+ "learning_rate": 3.911726030514698e-05,
2199
+ "loss": 1.2709,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.56,
2204
+ "grad_norm": 0.16677477955818176,
2205
+ "learning_rate": 3.9105050040852646e-05,
2206
+ "loss": 1.2614,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.56,
2211
+ "grad_norm": 0.17172600328922272,
2212
+ "learning_rate": 3.9092757840209347e-05,
2213
+ "loss": 1.184,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.56,
2218
+ "grad_norm": 0.15502072870731354,
2219
+ "learning_rate": 3.908038375593498e-05,
2220
+ "loss": 1.1066,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.56,
2225
+ "grad_norm": 0.16084939241409302,
2226
+ "learning_rate": 3.9067927841098614e-05,
2227
+ "loss": 1.2861,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.57,
2232
+ "grad_norm": 0.16080649197101593,
2233
+ "learning_rate": 3.905539014912027e-05,
2234
+ "loss": 1.2096,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.57,
2239
+ "grad_norm": 0.16113747656345367,
2240
+ "learning_rate": 3.90427707337707e-05,
2241
+ "loss": 1.1859,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.57,
2246
+ "grad_norm": 0.1573685258626938,
2247
+ "learning_rate": 3.903006964917111e-05,
2248
+ "loss": 1.1895,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.57,
2253
+ "grad_norm": 0.1588548868894577,
2254
+ "learning_rate": 3.901728694979301e-05,
2255
+ "loss": 1.2548,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.57,
2260
+ "grad_norm": 0.15512435138225555,
2261
+ "learning_rate": 3.900442269045791e-05,
2262
+ "loss": 1.2825,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.57,
2267
+ "grad_norm": 0.17400631308555603,
2268
+ "learning_rate": 3.899147692633711e-05,
2269
+ "loss": 1.3224,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.58,
2274
+ "grad_norm": 0.19142161309719086,
2275
+ "learning_rate": 3.897844971295144e-05,
2276
+ "loss": 1.1845,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.58,
2281
+ "grad_norm": 0.18297170102596283,
2282
+ "learning_rate": 3.89653411061711e-05,
2283
+ "loss": 1.198,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.58,
2288
+ "grad_norm": 0.17008209228515625,
2289
+ "learning_rate": 3.895215116221529e-05,
2290
+ "loss": 1.2946,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.58,
2295
+ "grad_norm": 0.16479219496250153,
2296
+ "learning_rate": 3.893887993765211e-05,
2297
+ "loss": 1.2793,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.58,
2302
+ "grad_norm": 0.16869719326496124,
2303
+ "learning_rate": 3.892552748939823e-05,
2304
+ "loss": 1.3061,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.59,
2309
+ "grad_norm": 0.16528654098510742,
2310
+ "learning_rate": 3.891209387471863e-05,
2311
+ "loss": 1.2766,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.59,
2316
+ "grad_norm": 0.1654234379529953,
2317
+ "learning_rate": 3.889857915122644e-05,
2318
+ "loss": 1.1604,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.59,
2323
+ "grad_norm": 0.1730952113866806,
2324
+ "learning_rate": 3.888498337688261e-05,
2325
+ "loss": 1.2526,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.59,
2330
+ "grad_norm": 0.16318488121032715,
2331
+ "learning_rate": 3.8871306609995715e-05,
2332
+ "loss": 1.2352,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.59,
2337
+ "grad_norm": 0.17201673984527588,
2338
+ "learning_rate": 3.885754890922169e-05,
2339
+ "loss": 1.331,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.59,
2344
+ "grad_norm": 0.1656893938779831,
2345
+ "learning_rate": 3.8843710333563536e-05,
2346
+ "loss": 1.2122,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.6,
2351
+ "grad_norm": 0.15819483995437622,
2352
+ "learning_rate": 3.882979094237115e-05,
2353
+ "loss": 1.1374,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.6,
2358
+ "grad_norm": 0.17912957072257996,
2359
+ "learning_rate": 3.8815790795341e-05,
2360
+ "loss": 1.1865,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.6,
2365
+ "grad_norm": 0.17538312077522278,
2366
+ "learning_rate": 3.8801709952515894e-05,
2367
+ "loss": 1.2847,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.6,
2372
+ "grad_norm": 0.16031011939048767,
2373
+ "learning_rate": 3.878754847428473e-05,
2374
+ "loss": 1.1983,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.6,
2379
+ "grad_norm": 0.15993796288967133,
2380
+ "learning_rate": 3.8773306421382215e-05,
2381
+ "loss": 1.2416,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.6,
2386
+ "grad_norm": 0.16199611127376556,
2387
+ "learning_rate": 3.875898385488864e-05,
2388
+ "loss": 1.2562,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.61,
2393
+ "grad_norm": 0.159291073679924,
2394
+ "learning_rate": 3.87445808362296e-05,
2395
+ "loss": 1.2262,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.61,
2400
+ "grad_norm": 0.15733957290649414,
2401
+ "learning_rate": 3.8730097427175685e-05,
2402
+ "loss": 1.1643,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.61,
2407
+ "grad_norm": 0.16530875861644745,
2408
+ "learning_rate": 3.8715533689842303e-05,
2409
+ "loss": 1.2809,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.61,
2414
+ "grad_norm": 0.31174418330192566,
2415
+ "learning_rate": 3.870088968668936e-05,
2416
+ "loss": 1.3185,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.61,
2421
+ "grad_norm": 0.1655522733926773,
2422
+ "learning_rate": 3.8686165480520964e-05,
2423
+ "loss": 1.3158,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.62,
2428
+ "grad_norm": 0.17282016575336456,
2429
+ "learning_rate": 3.867136113448524e-05,
2430
+ "loss": 1.3052,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.62,
2435
+ "grad_norm": 0.16425450146198273,
2436
+ "learning_rate": 3.865647671207399e-05,
2437
+ "loss": 1.3419,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.62,
2442
+ "grad_norm": 0.15989594161510468,
2443
+ "learning_rate": 3.864151227712244e-05,
2444
+ "loss": 1.1391,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.62,
2449
+ "grad_norm": 0.1693430244922638,
2450
+ "learning_rate": 3.8626467893808956e-05,
2451
+ "loss": 1.1643,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.62,
2456
+ "grad_norm": 0.15857893228530884,
2457
+ "learning_rate": 3.861134362665482e-05,
2458
+ "loss": 1.172,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.62,
2463
+ "grad_norm": 0.1693955510854721,
2464
+ "learning_rate": 3.859613954052387e-05,
2465
+ "loss": 1.3536,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.63,
2470
+ "grad_norm": 0.1622908115386963,
2471
+ "learning_rate": 3.85808557006223e-05,
2472
+ "loss": 1.2033,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.63,
2477
+ "grad_norm": 0.17406344413757324,
2478
+ "learning_rate": 3.8565492172498314e-05,
2479
+ "loss": 1.3955,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.63,
2484
+ "grad_norm": 0.17219895124435425,
2485
+ "learning_rate": 3.85500490220419e-05,
2486
+ "loss": 1.2801,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.63,
2491
+ "grad_norm": 0.25802117586135864,
2492
+ "learning_rate": 3.853452631548452e-05,
2493
+ "loss": 1.2639,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.63,
2498
+ "grad_norm": 0.16231444478034973,
2499
+ "learning_rate": 3.851892411939883e-05,
2500
+ "loss": 1.263,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.64,
2505
+ "grad_norm": 0.16031944751739502,
2506
+ "learning_rate": 3.8503242500698396e-05,
2507
+ "loss": 1.2532,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.64,
2512
+ "grad_norm": 0.15626895427703857,
2513
+ "learning_rate": 3.848748152663739e-05,
2514
+ "loss": 1.2321,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.64,
2519
+ "grad_norm": 0.15723131597042084,
2520
+ "learning_rate": 3.847164126481035e-05,
2521
+ "loss": 1.16,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.64,
2526
+ "grad_norm": 0.16541031002998352,
2527
+ "learning_rate": 3.845572178315183e-05,
2528
+ "loss": 1.2644,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.64,
2533
+ "grad_norm": 0.17055818438529968,
2534
+ "learning_rate": 3.843972314993614e-05,
2535
+ "loss": 1.2573,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.64,
2540
+ "grad_norm": 0.16403935849666595,
2541
+ "learning_rate": 3.8423645433777064e-05,
2542
+ "loss": 1.2026,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.65,
2547
+ "grad_norm": 0.157577782869339,
2548
+ "learning_rate": 3.840748870362753e-05,
2549
+ "loss": 1.2497,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.65,
2554
+ "grad_norm": 0.17598943412303925,
2555
+ "learning_rate": 3.8391253028779365e-05,
2556
+ "loss": 1.2226,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.65,
2561
+ "grad_norm": 0.15772323310375214,
2562
+ "learning_rate": 3.8374938478862936e-05,
2563
+ "loss": 1.1726,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.65,
2568
+ "grad_norm": 0.18102790415287018,
2569
+ "learning_rate": 3.83585451238469e-05,
2570
+ "loss": 1.2938,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.65,
2575
+ "grad_norm": 0.17216327786445618,
2576
+ "learning_rate": 3.834207303403789e-05,
2577
+ "loss": 1.3421,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.65,
2582
+ "grad_norm": 0.16786645352840424,
2583
+ "learning_rate": 3.83255222800802e-05,
2584
+ "loss": 1.2734,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.66,
2589
+ "grad_norm": 0.15548373758792877,
2590
+ "learning_rate": 3.83088929329555e-05,
2591
+ "loss": 1.2656,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.66,
2596
+ "grad_norm": 0.16076824069023132,
2597
+ "learning_rate": 3.8292185063982536e-05,
2598
+ "loss": 1.1429,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.66,
2603
+ "grad_norm": 0.16665169596672058,
2604
+ "learning_rate": 3.827539874481678e-05,
2605
+ "loss": 1.2775,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.66,
2610
+ "grad_norm": 0.1681457906961441,
2611
+ "learning_rate": 3.82585340474502e-05,
2612
+ "loss": 1.267,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.66,
2617
+ "grad_norm": 0.16220974922180176,
2618
+ "learning_rate": 3.824159104421087e-05,
2619
+ "loss": 1.2049,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.67,
2624
+ "grad_norm": 0.1736627221107483,
2625
+ "learning_rate": 3.822456980776272e-05,
2626
+ "loss": 1.2997,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.67,
2631
+ "grad_norm": 0.17877478897571564,
2632
+ "learning_rate": 3.820747041110517e-05,
2633
+ "loss": 1.2733,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.67,
2638
+ "grad_norm": 0.17471949756145477,
2639
+ "learning_rate": 3.8190292927572896e-05,
2640
+ "loss": 1.2488,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.67,
2645
+ "grad_norm": 0.1678047776222229,
2646
+ "learning_rate": 3.817303743083542e-05,
2647
+ "loss": 1.2193,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.67,
2652
+ "grad_norm": 0.18162204325199127,
2653
+ "learning_rate": 3.8155703994896866e-05,
2654
+ "loss": 1.1816,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.67,
2659
+ "grad_norm": 0.1719117909669876,
2660
+ "learning_rate": 3.813829269409562e-05,
2661
+ "loss": 1.3535,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.68,
2666
+ "grad_norm": 0.19797664880752563,
2667
+ "learning_rate": 3.812080360310399e-05,
2668
+ "loss": 1.3568,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.68,
2673
+ "grad_norm": 0.17989763617515564,
2674
+ "learning_rate": 3.810323679692793e-05,
2675
+ "loss": 1.3152,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.68,
2680
+ "grad_norm": 0.1681927740573883,
2681
+ "learning_rate": 3.808559235090667e-05,
2682
+ "loss": 1.2814,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.68,
2687
+ "grad_norm": 0.7965008616447449,
2688
+ "learning_rate": 3.806787034071244e-05,
2689
+ "loss": 1.3065,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.68,
2694
+ "grad_norm": 0.17025770246982574,
2695
+ "learning_rate": 3.805007084235009e-05,
2696
+ "loss": 1.1674,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.68,
2701
+ "grad_norm": 0.1730756014585495,
2702
+ "learning_rate": 3.803219393215683e-05,
2703
+ "loss": 1.1614,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.69,
2708
+ "grad_norm": 0.16721907258033752,
2709
+ "learning_rate": 3.801423968680185e-05,
2710
+ "loss": 1.2812,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.69,
2715
+ "grad_norm": 0.17217952013015747,
2716
+ "learning_rate": 3.7996208183286e-05,
2717
+ "loss": 1.229,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.69,
2722
+ "grad_norm": 0.1746724396944046,
2723
+ "learning_rate": 3.79780994989415e-05,
2724
+ "loss": 1.3108,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.69,
2729
+ "grad_norm": 0.1702830046415329,
2730
+ "learning_rate": 3.795991371143153e-05,
2731
+ "loss": 1.2668,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.69,
2736
+ "grad_norm": 0.1598566621541977,
2737
+ "learning_rate": 3.794165089875e-05,
2738
+ "loss": 1.1801,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.7,
2743
+ "grad_norm": 0.17259812355041504,
2744
+ "learning_rate": 3.7923311139221114e-05,
2745
+ "loss": 1.2354,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.7,
2750
+ "grad_norm": 0.2091628760099411,
2751
+ "learning_rate": 3.7904894511499115e-05,
2752
+ "loss": 1.1883,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.7,
2757
+ "grad_norm": 0.22369763255119324,
2758
+ "learning_rate": 3.788640109456788e-05,
2759
+ "loss": 1.2687,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.7,
2764
+ "grad_norm": 0.17732800543308258,
2765
+ "learning_rate": 3.7867830967740643e-05,
2766
+ "loss": 1.3269,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.7,
2771
+ "grad_norm": 0.28118595480918884,
2772
+ "learning_rate": 3.7849184210659614e-05,
2773
+ "loss": 1.2424,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.7,
2778
+ "grad_norm": 0.18187764286994934,
2779
+ "learning_rate": 3.7830460903295634e-05,
2780
+ "loss": 1.1875,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.71,
2785
+ "grad_norm": 0.16909223794937134,
2786
+ "learning_rate": 3.781166112594788e-05,
2787
+ "loss": 1.2701,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.71,
2792
+ "grad_norm": 0.17135021090507507,
2793
+ "learning_rate": 3.779278495924345e-05,
2794
+ "loss": 1.1831,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.71,
2799
+ "grad_norm": 0.17674005031585693,
2800
+ "learning_rate": 3.777383248413709e-05,
2801
+ "loss": 1.2732,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.71,
2806
+ "grad_norm": 0.198370561003685,
2807
+ "learning_rate": 3.775480378191079e-05,
2808
+ "loss": 1.1929,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.71,
2813
+ "grad_norm": 0.18088266253471375,
2814
+ "learning_rate": 3.773569893417347e-05,
2815
+ "loss": 1.2575,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.72,
2820
+ "grad_norm": 0.16227401793003082,
2821
+ "learning_rate": 3.7716518022860606e-05,
2822
+ "loss": 1.1559,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.72,
2827
+ "grad_norm": 0.1971830427646637,
2828
+ "learning_rate": 3.769726113023389e-05,
2829
+ "loss": 1.211,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.72,
2834
+ "grad_norm": 0.1707913875579834,
2835
+ "learning_rate": 3.76779283388809e-05,
2836
+ "loss": 1.1535,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.72,
2841
+ "grad_norm": 0.1668080985546112,
2842
+ "learning_rate": 3.765851973171469e-05,
2843
+ "loss": 1.1838,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.72,
2848
+ "grad_norm": 0.16925190389156342,
2849
+ "learning_rate": 3.763903539197348e-05,
2850
+ "loss": 1.2518,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.72,
2855
+ "grad_norm": 0.1722031980752945,
2856
+ "learning_rate": 3.76194754032203e-05,
2857
+ "loss": 1.2118,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.73,
2862
+ "grad_norm": 0.17410987615585327,
2863
+ "learning_rate": 3.759983984934261e-05,
2864
+ "loss": 1.232,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.73,
2869
+ "grad_norm": 0.1774168461561203,
2870
+ "learning_rate": 3.758012881455192e-05,
2871
+ "loss": 1.1537,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.73,
2876
+ "grad_norm": 0.16939586400985718,
2877
+ "learning_rate": 3.756034238338352e-05,
2878
+ "loss": 1.1585,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.73,
2883
+ "grad_norm": 0.17839783430099487,
2884
+ "learning_rate": 3.754048064069599e-05,
2885
+ "loss": 1.3063,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.73,
2890
+ "grad_norm": 0.16792502999305725,
2891
+ "learning_rate": 3.7520543671670936e-05,
2892
+ "loss": 1.2978,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.73,
2897
+ "grad_norm": 0.189891517162323,
2898
+ "learning_rate": 3.7500531561812576e-05,
2899
+ "loss": 1.235,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.74,
2904
+ "grad_norm": 0.18355625867843628,
2905
+ "learning_rate": 3.7480444396947396e-05,
2906
+ "loss": 1.284,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.74,
2911
+ "grad_norm": 0.1714622974395752,
2912
+ "learning_rate": 3.7460282263223764e-05,
2913
+ "loss": 1.1672,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.74,
2918
+ "grad_norm": 0.1876678168773651,
2919
+ "learning_rate": 3.744004524711158e-05,
2920
+ "loss": 1.2938,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.74,
2925
+ "grad_norm": 0.16813495755195618,
2926
+ "learning_rate": 3.741973343540188e-05,
2927
+ "loss": 1.1843,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.74,
2932
+ "grad_norm": 0.2258601039648056,
2933
+ "learning_rate": 3.739934691520648e-05,
2934
+ "loss": 1.2196,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.75,
2939
+ "grad_norm": 0.17664629220962524,
2940
+ "learning_rate": 3.7378885773957614e-05,
2941
+ "loss": 1.1806,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.75,
2946
+ "grad_norm": 0.1906002312898636,
2947
+ "learning_rate": 3.735835009940754e-05,
2948
+ "loss": 1.2252,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.75,
2953
+ "grad_norm": 0.1772574931383133,
2954
+ "learning_rate": 3.733773997962815e-05,
2955
+ "loss": 1.2304,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.75,
2960
+ "grad_norm": 0.17094944417476654,
2961
+ "learning_rate": 3.731705550301064e-05,
2962
+ "loss": 1.2695,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.75,
2967
+ "grad_norm": 0.19538728892803192,
2968
+ "learning_rate": 3.729629675826507e-05,
2969
+ "loss": 1.2349,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.75,
2974
+ "grad_norm": 0.18487848341464996,
2975
+ "learning_rate": 3.727546383442007e-05,
2976
+ "loss": 1.2724,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.76,
2981
+ "grad_norm": 0.1757872849702835,
2982
+ "learning_rate": 3.725455682082233e-05,
2983
+ "loss": 1.2322,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.76,
2988
+ "grad_norm": 0.161984384059906,
2989
+ "learning_rate": 3.7233575807136354e-05,
2990
+ "loss": 1.1426,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.76,
2995
+ "grad_norm": 0.1794055700302124,
2996
+ "learning_rate": 3.7212520883343974e-05,
2997
+ "loss": 1.3217,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.76,
3002
+ "grad_norm": 0.17491760849952698,
3003
+ "learning_rate": 3.719139213974403e-05,
3004
+ "loss": 1.2233,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.76,
3009
+ "grad_norm": 0.21414370834827423,
3010
+ "learning_rate": 3.717018966695192e-05,
3011
+ "loss": 1.2594,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.76,
3016
+ "grad_norm": 0.1733601987361908,
3017
+ "learning_rate": 3.714891355589929e-05,
3018
+ "loss": 1.2172,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.77,
3023
+ "grad_norm": 0.1574425846338272,
3024
+ "learning_rate": 3.712756389783356e-05,
3025
+ "loss": 1.2312,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.77,
3030
+ "grad_norm": 0.18264387547969818,
3031
+ "learning_rate": 3.7106140784317594e-05,
3032
+ "loss": 1.2142,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.77,
3037
+ "grad_norm": 0.17057283222675323,
3038
+ "learning_rate": 3.708464430722929e-05,
3039
+ "loss": 1.1942,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.77,
3044
+ "grad_norm": 0.17199979722499847,
3045
+ "learning_rate": 3.706307455876118e-05,
3046
+ "loss": 1.2263,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.77,
3051
+ "grad_norm": 0.1813754439353943,
3052
+ "learning_rate": 3.704143163142001e-05,
3053
+ "loss": 1.2384,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.78,
3058
+ "grad_norm": 0.16909797489643097,
3059
+ "learning_rate": 3.701971561802642e-05,
3060
+ "loss": 1.1905,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.78,
3065
+ "grad_norm": 0.16116483509540558,
3066
+ "learning_rate": 3.699792661171444e-05,
3067
+ "loss": 1.1849,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.78,
3072
+ "grad_norm": 0.17043234407901764,
3073
+ "learning_rate": 3.69760647059312e-05,
3074
+ "loss": 1.2199,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.78,
3079
+ "grad_norm": 0.17161297798156738,
3080
+ "learning_rate": 3.695412999443643e-05,
3081
+ "loss": 1.2092,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.78,
3086
+ "grad_norm": 0.1632567048072815,
3087
+ "learning_rate": 3.693212257130215e-05,
3088
+ "loss": 1.202,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.78,
3093
+ "grad_norm": 0.17327187955379486,
3094
+ "learning_rate": 3.691004253091217e-05,
3095
+ "loss": 1.2268,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.79,
3100
+ "grad_norm": 0.17322610318660736,
3101
+ "learning_rate": 3.688788996796179e-05,
3102
+ "loss": 1.2197,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.79,
3107
+ "grad_norm": 0.16746391355991364,
3108
+ "learning_rate": 3.686566497745728e-05,
3109
+ "loss": 1.2467,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.79,
3114
+ "grad_norm": 0.16351164877414703,
3115
+ "learning_rate": 3.6843367654715584e-05,
3116
+ "loss": 1.2082,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.79,
3121
+ "grad_norm": 0.17086975276470184,
3122
+ "learning_rate": 3.6820998095363834e-05,
3123
+ "loss": 1.2093,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.79,
3128
+ "grad_norm": 0.18365664780139923,
3129
+ "learning_rate": 3.679855639533895e-05,
3130
+ "loss": 1.2005,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.8,
3135
+ "grad_norm": 0.17057694494724274,
3136
+ "learning_rate": 3.677604265088729e-05,
3137
+ "loss": 1.1776,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.8,
3142
+ "grad_norm": 0.1794084757566452,
3143
+ "learning_rate": 3.675345695856415e-05,
3144
+ "loss": 1.208,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.8,
3149
+ "grad_norm": 0.1862630546092987,
3150
+ "learning_rate": 3.6730799415233414e-05,
3151
+ "loss": 1.1669,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.8,
3156
+ "grad_norm": 0.19876237213611603,
3157
+ "learning_rate": 3.670807011806709e-05,
3158
+ "loss": 1.2048,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.8,
3163
+ "grad_norm": 0.1671525239944458,
3164
+ "learning_rate": 3.668526916454495e-05,
3165
+ "loss": 1.2165,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.8,
3170
+ "grad_norm": 0.18071943521499634,
3171
+ "learning_rate": 3.666239665245405e-05,
3172
+ "loss": 1.2544,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.81,
3177
+ "grad_norm": 0.17689716815948486,
3178
+ "learning_rate": 3.6639452679888365e-05,
3179
+ "loss": 1.2845,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.81,
3184
+ "grad_norm": 0.16965340077877045,
3185
+ "learning_rate": 3.661643734524834e-05,
3186
+ "loss": 1.2231,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.81,
3191
+ "grad_norm": 0.18019068241119385,
3192
+ "learning_rate": 3.6593350747240456e-05,
3193
+ "loss": 1.2223,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.81,
3198
+ "grad_norm": 0.18523040413856506,
3199
+ "learning_rate": 3.657019298487685e-05,
3200
+ "loss": 1.2486,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.81,
3205
+ "grad_norm": 0.19133590161800385,
3206
+ "learning_rate": 3.654696415747483e-05,
3207
+ "loss": 1.1961,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.81,
3212
+ "grad_norm": 0.17477400600910187,
3213
+ "learning_rate": 3.652366436465652e-05,
3214
+ "loss": 1.2621,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.82,
3219
+ "grad_norm": 0.21932773292064667,
3220
+ "learning_rate": 3.650029370634837e-05,
3221
+ "loss": 1.2104,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.82,
3226
+ "grad_norm": 0.18244686722755432,
3227
+ "learning_rate": 3.6476852282780755e-05,
3228
+ "loss": 1.2468,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.82,
3233
+ "grad_norm": 0.17326635122299194,
3234
+ "learning_rate": 3.645334019448755e-05,
3235
+ "loss": 1.1609,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.82,
3240
+ "grad_norm": 0.17420323193073273,
3241
+ "learning_rate": 3.6429757542305686e-05,
3242
+ "loss": 1.2156,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.82,
3247
+ "grad_norm": 0.1676824539899826,
3248
+ "learning_rate": 3.6406104427374744e-05,
3249
+ "loss": 1.1739,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.83,
3254
+ "grad_norm": 0.1757155805826187,
3255
+ "learning_rate": 3.638238095113646e-05,
3256
+ "loss": 1.187,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.83,
3261
+ "grad_norm": 0.18094448745250702,
3262
+ "learning_rate": 3.6358587215334355e-05,
3263
+ "loss": 1.2271,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.83,
3268
+ "grad_norm": 0.1914701908826828,
3269
+ "learning_rate": 3.633472332201329e-05,
3270
+ "loss": 1.0756,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.83,
3275
+ "grad_norm": 0.17444278299808502,
3276
+ "learning_rate": 3.631078937351898e-05,
3277
+ "loss": 1.2323,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.83,
3282
+ "grad_norm": 0.17253823578357697,
3283
+ "learning_rate": 3.628678547249761e-05,
3284
+ "loss": 1.2408,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.83,
3289
+ "grad_norm": 0.1650070697069168,
3290
+ "learning_rate": 3.626271172189536e-05,
3291
+ "loss": 1.1771,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.84,
3296
+ "grad_norm": 0.16705216467380524,
3297
+ "learning_rate": 3.623856822495798e-05,
3298
+ "loss": 1.2229,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.84,
3303
+ "grad_norm": 0.1749449521303177,
3304
+ "learning_rate": 3.6214355085230346e-05,
3305
+ "loss": 1.3156,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.84,
3310
+ "grad_norm": 0.1721351593732834,
3311
+ "learning_rate": 3.6190072406556016e-05,
3312
+ "loss": 1.2198,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.84,
3317
+ "grad_norm": 0.17338605225086212,
3318
+ "learning_rate": 3.616572029307676e-05,
3319
+ "loss": 1.2696,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.84,
3324
+ "grad_norm": 0.17081210017204285,
3325
+ "learning_rate": 3.614129884923217e-05,
3326
+ "loss": 1.1272,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.85,
3331
+ "grad_norm": 0.17321552336215973,
3332
+ "learning_rate": 3.611680817975915e-05,
3333
+ "loss": 1.0944,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.85,
3338
+ "grad_norm": 0.1784401535987854,
3339
+ "learning_rate": 3.609224838969149e-05,
3340
+ "loss": 1.2999,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.85,
3345
+ "grad_norm": 0.17898234724998474,
3346
+ "learning_rate": 3.606761958435945e-05,
3347
+ "loss": 1.2288,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.85,
3352
+ "grad_norm": 0.1713172197341919,
3353
+ "learning_rate": 3.6042921869389255e-05,
3354
+ "loss": 1.2837,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.85,
3359
+ "grad_norm": 0.16900764405727386,
3360
+ "learning_rate": 3.601815535070266e-05,
3361
+ "loss": 1.1852,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.85,
3366
+ "grad_norm": 0.16487158834934235,
3367
+ "learning_rate": 3.599332013451651e-05,
3368
+ "loss": 1.2508,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.86,
3373
+ "grad_norm": 0.1718226671218872,
3374
+ "learning_rate": 3.596841632734228e-05,
3375
+ "loss": 1.2721,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.86,
3380
+ "grad_norm": 0.17556148767471313,
3381
+ "learning_rate": 3.594344403598561e-05,
3382
+ "loss": 1.1579,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.86,
3387
+ "grad_norm": 0.1776830554008484,
3388
+ "learning_rate": 3.591840336754584e-05,
3389
+ "loss": 1.3364,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.86,
3394
+ "grad_norm": 0.17868830263614655,
3395
+ "learning_rate": 3.589329442941556e-05,
3396
+ "loss": 1.2904,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.86,
3401
+ "grad_norm": 0.16877397894859314,
3402
+ "learning_rate": 3.586811732928017e-05,
3403
+ "loss": 1.1634,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.86,
3408
+ "grad_norm": 0.29319822788238525,
3409
+ "learning_rate": 3.5842872175117386e-05,
3410
+ "loss": 1.1825,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.87,
3415
+ "grad_norm": 0.17021752893924713,
3416
+ "learning_rate": 3.5817559075196775e-05,
3417
+ "loss": 1.2404,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.87,
3422
+ "grad_norm": 0.18304027616977692,
3423
+ "learning_rate": 3.579217813807934e-05,
3424
+ "loss": 1.208,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.87,
3429
+ "grad_norm": 0.18062491714954376,
3430
+ "learning_rate": 3.576672947261698e-05,
3431
+ "loss": 1.3094,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.87,
3436
+ "grad_norm": 0.18421950936317444,
3437
+ "learning_rate": 3.574121318795208e-05,
3438
+ "loss": 1.2645,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.87,
3443
+ "grad_norm": 0.17431406676769257,
3444
+ "learning_rate": 3.571562939351705e-05,
3445
+ "loss": 1.241,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.88,
3450
+ "grad_norm": 0.1877688467502594,
3451
+ "learning_rate": 3.568997819903377e-05,
3452
+ "loss": 1.279,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.88,
3457
+ "grad_norm": 0.17437636852264404,
3458
+ "learning_rate": 3.566425971451324e-05,
3459
+ "loss": 1.1178,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.88,
3464
+ "grad_norm": 0.16442453861236572,
3465
+ "learning_rate": 3.5638474050255024e-05,
3466
+ "loss": 1.0344,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.88,
3471
+ "grad_norm": 0.1917441338300705,
3472
+ "learning_rate": 3.5612621316846805e-05,
3473
+ "loss": 1.2959,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.88,
3478
+ "grad_norm": 0.1886010766029358,
3479
+ "learning_rate": 3.55867016251639e-05,
3480
+ "loss": 1.187,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.88,
3485
+ "grad_norm": 0.20641809701919556,
3486
+ "learning_rate": 3.556071508636879e-05,
3487
+ "loss": 1.1979,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.89,
3492
+ "grad_norm": 0.1747037172317505,
3493
+ "learning_rate": 3.553466181191067e-05,
3494
+ "loss": 1.18,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.89,
3499
+ "grad_norm": 0.1825367510318756,
3500
+ "learning_rate": 3.550854191352492e-05,
3501
+ "loss": 1.293,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.89,
3506
+ "grad_norm": 0.17783713340759277,
3507
+ "learning_rate": 3.5482355503232656e-05,
3508
+ "loss": 1.2322,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 0.89,
3513
+ "grad_norm": 0.17146770656108856,
3514
+ "learning_rate": 3.5456102693340255e-05,
3515
+ "loss": 1.2166,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 0.89,
3520
+ "grad_norm": 0.1839715540409088,
3521
+ "learning_rate": 3.5429783596438864e-05,
3522
+ "loss": 1.2572,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 0.89,
3527
+ "grad_norm": 0.17346954345703125,
3528
+ "learning_rate": 3.54033983254039e-05,
3529
+ "loss": 1.1569,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 0.9,
3534
+ "grad_norm": 0.19239090383052826,
3535
+ "learning_rate": 3.53769469933946e-05,
3536
+ "loss": 1.1428,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 0.9,
3541
+ "grad_norm": 0.21293193101882935,
3542
+ "learning_rate": 3.53504297138535e-05,
3543
+ "loss": 1.3067,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 0.9,
3548
+ "grad_norm": 0.18217827379703522,
3549
+ "learning_rate": 3.532384660050601e-05,
3550
+ "loss": 1.3452,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 0.9,
3555
+ "grad_norm": 0.18584825098514557,
3556
+ "learning_rate": 3.529719776735982e-05,
3557
+ "loss": 1.3022,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 0.9,
3562
+ "grad_norm": 0.17959220707416534,
3563
+ "learning_rate": 3.527048332870453e-05,
3564
+ "loss": 1.2488,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 0.91,
3569
+ "grad_norm": 0.1819523572921753,
3570
+ "learning_rate": 3.524370339911107e-05,
3571
+ "loss": 1.1128,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 0.91,
3576
+ "grad_norm": 0.20110684633255005,
3577
+ "learning_rate": 3.521685809343126e-05,
3578
+ "loss": 1.2031,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 0.91,
3583
+ "grad_norm": 0.17916655540466309,
3584
+ "learning_rate": 3.518994752679728e-05,
3585
+ "loss": 1.2172,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 0.91,
3590
+ "grad_norm": 0.17345504462718964,
3591
+ "learning_rate": 3.5162971814621234e-05,
3592
+ "loss": 1.2089,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 0.91,
3597
+ "grad_norm": 0.5167191624641418,
3598
+ "learning_rate": 3.513593107259458e-05,
3599
+ "loss": 1.2281,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 0.91,
3604
+ "grad_norm": 0.17433781921863556,
3605
+ "learning_rate": 3.510882541668769e-05,
3606
+ "loss": 1.2192,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 0.92,
3611
+ "grad_norm": 0.1887521892786026,
3612
+ "learning_rate": 3.508165496314931e-05,
3613
+ "loss": 1.2763,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 0.92,
3618
+ "grad_norm": 0.1756310611963272,
3619
+ "learning_rate": 3.505441982850615e-05,
3620
+ "loss": 1.2834,
3621
+ "step": 516
3622
+ },
3623
+ {
3624
+ "epoch": 0.92,
3625
+ "grad_norm": 0.17292964458465576,
3626
+ "learning_rate": 3.502712012956223e-05,
3627
+ "loss": 1.2629,
3628
+ "step": 517
3629
+ },
3630
+ {
3631
+ "epoch": 0.92,
3632
+ "grad_norm": 0.18053486943244934,
3633
+ "learning_rate": 3.4999755983398537e-05,
3634
+ "loss": 1.2334,
3635
+ "step": 518
3636
+ },
3637
+ {
3638
+ "epoch": 0.92,
3639
+ "grad_norm": 0.16213248670101166,
3640
+ "learning_rate": 3.4972327507372415e-05,
3641
+ "loss": 1.1131,
3642
+ "step": 519
3643
+ },
3644
+ {
3645
+ "epoch": 0.93,
3646
+ "grad_norm": 0.18039150536060333,
3647
+ "learning_rate": 3.494483481911713e-05,
3648
+ "loss": 1.2284,
3649
+ "step": 520
3650
+ },
3651
+ {
3652
+ "epoch": 0.93,
3653
+ "grad_norm": 0.17420712113380432,
3654
+ "learning_rate": 3.491727803654132e-05,
3655
+ "loss": 1.2631,
3656
+ "step": 521
3657
+ },
3658
+ {
3659
+ "epoch": 0.93,
3660
+ "grad_norm": 0.17673422396183014,
3661
+ "learning_rate": 3.488965727782851e-05,
3662
+ "loss": 1.2223,
3663
+ "step": 522
3664
+ },
3665
+ {
3666
+ "epoch": 0.93,
3667
+ "grad_norm": 0.17651581764221191,
3668
+ "learning_rate": 3.486197266143659e-05,
3669
+ "loss": 1.2411,
3670
+ "step": 523
3671
+ },
3672
+ {
3673
+ "epoch": 0.93,
3674
+ "grad_norm": 0.18939518928527832,
3675
+ "learning_rate": 3.483422430609735e-05,
3676
+ "loss": 1.2125,
3677
+ "step": 524
3678
+ },
3679
+ {
3680
+ "epoch": 0.93,
3681
+ "grad_norm": 0.1721743494272232,
3682
+ "learning_rate": 3.48064123308159e-05,
3683
+ "loss": 1.2753,
3684
+ "step": 525
3685
+ },
3686
+ {
3687
+ "epoch": 0.94,
3688
+ "grad_norm": 0.18775472044944763,
3689
+ "learning_rate": 3.477853685487023e-05,
3690
+ "loss": 1.2722,
3691
+ "step": 526
3692
+ },
3693
+ {
3694
+ "epoch": 0.94,
3695
+ "grad_norm": 0.17603406310081482,
3696
+ "learning_rate": 3.4750597997810644e-05,
3697
+ "loss": 1.3061,
3698
+ "step": 527
3699
+ },
3700
+ {
3701
+ "epoch": 0.94,
3702
+ "grad_norm": 0.22322580218315125,
3703
+ "learning_rate": 3.472259587945928e-05,
3704
+ "loss": 1.1812,
3705
+ "step": 528
3706
+ },
3707
+ {
3708
+ "epoch": 0.94,
3709
+ "grad_norm": 0.16920214891433716,
3710
+ "learning_rate": 3.469453061990959e-05,
3711
+ "loss": 1.2284,
3712
+ "step": 529
3713
+ },
3714
+ {
3715
+ "epoch": 0.94,
3716
+ "grad_norm": 0.1781124472618103,
3717
+ "learning_rate": 3.466640233952582e-05,
3718
+ "loss": 1.1115,
3719
+ "step": 530
3720
+ },
3721
+ {
3722
+ "epoch": 0.94,
3723
+ "grad_norm": 0.17156866192817688,
3724
+ "learning_rate": 3.4638211158942493e-05,
3725
+ "loss": 1.1759,
3726
+ "step": 531
3727
+ },
3728
+ {
3729
+ "epoch": 0.95,
3730
+ "grad_norm": 0.18725483119487762,
3731
+ "learning_rate": 3.460995719906389e-05,
3732
+ "loss": 1.3214,
3733
+ "step": 532
3734
+ },
3735
+ {
3736
+ "epoch": 0.95,
3737
+ "grad_norm": 0.17117691040039062,
3738
+ "learning_rate": 3.458164058106353e-05,
3739
+ "loss": 1.1723,
3740
+ "step": 533
3741
+ },
3742
+ {
3743
+ "epoch": 0.95,
3744
+ "grad_norm": 0.18169349431991577,
3745
+ "learning_rate": 3.455326142638369e-05,
3746
+ "loss": 1.1945,
3747
+ "step": 534
3748
+ },
3749
+ {
3750
+ "epoch": 0.95,
3751
+ "grad_norm": 0.17365239560604095,
3752
+ "learning_rate": 3.45248198567348e-05,
3753
+ "loss": 1.2686,
3754
+ "step": 535
3755
+ },
3756
+ {
3757
+ "epoch": 0.95,
3758
+ "grad_norm": 0.23987340927124023,
3759
+ "learning_rate": 3.4496315994094995e-05,
3760
+ "loss": 1.2492,
3761
+ "step": 536
3762
+ },
3763
+ {
3764
+ "epoch": 0.96,
3765
+ "grad_norm": 0.18593370914459229,
3766
+ "learning_rate": 3.446774996070959e-05,
3767
+ "loss": 1.209,
3768
+ "step": 537
3769
+ },
3770
+ {
3771
+ "epoch": 0.96,
3772
+ "grad_norm": 0.1767171174287796,
3773
+ "learning_rate": 3.443912187909049e-05,
3774
+ "loss": 1.2453,
3775
+ "step": 538
3776
+ },
3777
+ {
3778
+ "epoch": 0.96,
3779
+ "grad_norm": 0.17480580508708954,
3780
+ "learning_rate": 3.441043187201574e-05,
3781
+ "loss": 1.236,
3782
+ "step": 539
3783
+ },
3784
+ {
3785
+ "epoch": 0.96,
3786
+ "grad_norm": 0.22028052806854248,
3787
+ "learning_rate": 3.4381680062528957e-05,
3788
+ "loss": 1.2248,
3789
+ "step": 540
3790
+ },
3791
+ {
3792
+ "epoch": 0.96,
3793
+ "grad_norm": 0.18207862973213196,
3794
+ "learning_rate": 3.43528665739388e-05,
3795
+ "loss": 1.2862,
3796
+ "step": 541
3797
+ },
3798
+ {
3799
+ "epoch": 0.96,
3800
+ "grad_norm": 0.17260274291038513,
3801
+ "learning_rate": 3.432399152981847e-05,
3802
+ "loss": 1.1853,
3803
+ "step": 542
3804
+ },
3805
+ {
3806
+ "epoch": 0.97,
3807
+ "grad_norm": 0.18698668479919434,
3808
+ "learning_rate": 3.429505505400516e-05,
3809
+ "loss": 1.3278,
3810
+ "step": 543
3811
+ },
3812
+ {
3813
+ "epoch": 0.97,
3814
+ "grad_norm": 0.18749062716960907,
3815
+ "learning_rate": 3.426605727059952e-05,
3816
+ "loss": 1.283,
3817
+ "step": 544
3818
+ },
3819
+ {
3820
+ "epoch": 0.97,
3821
+ "grad_norm": 0.17615492641925812,
3822
+ "learning_rate": 3.423699830396512e-05,
3823
+ "loss": 1.1874,
3824
+ "step": 545
3825
+ },
3826
+ {
3827
+ "epoch": 0.97,
3828
+ "grad_norm": 0.21085886657238007,
3829
+ "learning_rate": 3.4207878278727956e-05,
3830
+ "loss": 1.1462,
3831
+ "step": 546
3832
+ },
3833
+ {
3834
+ "epoch": 0.97,
3835
+ "grad_norm": 0.1712028980255127,
3836
+ "learning_rate": 3.417869731977588e-05,
3837
+ "loss": 1.1746,
3838
+ "step": 547
3839
+ },
3840
+ {
3841
+ "epoch": 0.97,
3842
+ "grad_norm": 0.17687669396400452,
3843
+ "learning_rate": 3.4149455552258054e-05,
3844
+ "loss": 1.2707,
3845
+ "step": 548
3846
+ },
3847
+ {
3848
+ "epoch": 0.98,
3849
+ "grad_norm": 0.20794951915740967,
3850
+ "learning_rate": 3.412015310158444e-05,
3851
+ "loss": 1.2805,
3852
+ "step": 549
3853
+ },
3854
+ {
3855
+ "epoch": 0.98,
3856
+ "grad_norm": 0.18447402119636536,
3857
+ "learning_rate": 3.4090790093425276e-05,
3858
+ "loss": 1.2066,
3859
+ "step": 550
3860
+ }
3861
+ ],
3862
+ "logging_steps": 1.0,
3863
+ "max_steps": 1686,
3864
+ "num_input_tokens_seen": 0,
3865
+ "num_train_epochs": 3,
3866
+ "save_steps": 50,
3867
+ "total_flos": 2.2559932560074342e+19,
3868
+ "train_batch_size": 3,
3869
+ "trial_name": null,
3870
+ "trial_params": null
3871
+ }
checkpoint-550/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc7415b02040e89a5815e3440269ca97278b2cffc930b607438a4fe6666c006c
3
+ size 5048
checkpoint-700/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/loftq
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-700/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/loftq",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": "unsloth",
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "up_proj",
26
+ "down_proj",
27
+ "gate_proj",
28
+ "o_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": true
34
+ }
checkpoint-700/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8fd2e2597690cf294f902ca2d1b3e7b6bea1b8cfb25ced0c3b3e509a74b6c08
3
+ size 3313653480
checkpoint-700/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58786f5eb78d8c08963a10d5a9390acb388cb5017448475415e8bcc0b6ec86ad
3
+ size 6627963994
checkpoint-700/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad5690784fcf7a88220ae6547ccb22f548e9ba01c92127b3bae11ec2be909a27
3
+ size 14244
checkpoint-700/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87118eb44d0c39d97dba5475ec5451c3ce9366bc88bad49c313b17542169bd1c
3
+ size 1064
checkpoint-700/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-700/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-700/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '\\n\\n### Human:\\n\\n' + content + '\\n\\n### Assistant:\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-700/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-700/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:592f657835aa01c7d0df0937a6528b22d0433203d341fad68abeec075135c251
3
+ size 5112