--- language: en license: mit tags: - GECToR_gotutiyan - grammatical error correction --- # gector sample This is an unofficial pretrained model of GECToR ([Omelianchuk+ 2020](https://aclanthology.org/2020.bea-1.16/)). ### How to use The code is avaliable from https://github.com/gotutiyan/gector. CLI ```sh python predict.py --input --restore_dir gotutiyan/gector-xlnet-base-cased-5k --out ``` API ```py from transformers import AutoTokenizer from gector.modeling import GECToR from gector.predict import predict, load_verb_dict import torch model_id = 'gotutiyan/gector-xlnet-base-cased-5k' model = GECToR.from_pretrained(model_id) if torch.cuda.is_available(): model.cuda() tokenizer = AutoTokenizer.from_pretrained(model_id) encode, decode = load_verb_dict('data/verb-form-vocab.txt') srcs = [ 'This is a correct sentence.', 'This are a wrong sentences' ] corrected = predict( model, tokenizer, srcs, encode, decode, keep_confidence=0.0, min_error_prob=0.0, n_iteration=5, batch_size=2, ) print(corrected) ```