Update README.md
Browse filesthe previous provided code has some errors which are fixed now and can be replicated
README.md
CHANGED
@@ -26,6 +26,8 @@ Here is how to use this model to perform zero-shot image classification:
|
|
26 |
|
27 |
```python
|
28 |
from transformers import pipeline
|
|
|
|
|
29 |
|
30 |
# load pipeline
|
31 |
ckpt = "google/siglip2-base-patch16-224"
|
@@ -33,11 +35,13 @@ image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")
|
|
33 |
|
34 |
# load image and candidate labels
|
35 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
|
36 |
candidate_labels = ["2 cats", "a plane", "a remote"]
|
37 |
|
38 |
# run inference
|
39 |
-
outputs = image_classifier(image, candidate_labels)
|
40 |
print(outputs)
|
|
|
41 |
```
|
42 |
|
43 |
You can encode an image using the Vision Tower like so:
|
|
|
26 |
|
27 |
```python
|
28 |
from transformers import pipeline
|
29 |
+
from urllib.request import urlopen
|
30 |
+
from PIL import Image
|
31 |
|
32 |
# load pipeline
|
33 |
ckpt = "google/siglip2-base-patch16-224"
|
|
|
35 |
|
36 |
# load image and candidate labels
|
37 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
38 |
+
image = Image.open(urlopen(url))
|
39 |
candidate_labels = ["2 cats", "a plane", "a remote"]
|
40 |
|
41 |
# run inference
|
42 |
+
outputs = image_classifier(image, candidate_labels=candidate_labels)
|
43 |
print(outputs)
|
44 |
+
# [{'score': 0.17189568281173706, 'label': '2 cats'}, {'score': 0.02414962463080883, 'label': 'a remote'}, {'score': 2.1914941044087755e-06, 'label': 'a plane'}]
|
45 |
```
|
46 |
|
47 |
You can encode an image using the Vision Tower like so:
|