--- library_name: transformers license: apache-2.0 base_model: PekingU/rtdetr_r18vd_coco_o365 tags: - generated_from_trainer model-index: - name: kvasir_seg_rtdetr_r18_test_fps results: [] --- # kvasir_seg_rtdetr_r18_test_fps This model is a fine-tuned version of [PekingU/rtdetr_r18vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r18vd_coco_o365) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.4708 - Map: 0.5375 - Map 50: 0.7037 - Map 75: 0.6008 - Map Small: 0.0 - Map Medium: 0.2762 - Map Large: 0.5563 - Mar 1: 0.6024 - Mar 10: 0.8218 - Mar 100: 0.9209 - Mar Small: 0.0 - Mar Medium: 0.78 - Mar Large: 0.9325 - Map Polyp: 0.5375 - Mar 100 Polyp: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Polyp | Mar 100 Polyp | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------:|:-------------:| | 188.8938 | 1.0 | 100 | 35.3914 | 0.045 | 0.0921 | 0.0405 | 0.0 | 0.0001 | 0.0612 | 0.1175 | 0.3521 | 0.6398 | 0.0 | 0.09 | 0.6705 | 0.045 | 0.6398 | | 20.5545 | 2.0 | 200 | 13.3860 | 0.0707 | 0.1207 | 0.0633 | 0.0 | 0.0164 | 0.0763 | 0.2 | 0.5607 | 0.8398 | 0.0 | 0.63 | 0.8545 | 0.0707 | 0.8398 | | 12.8462 | 3.0 | 300 | 8.8009 | 0.251 | 0.3922 | 0.2349 | 0.0 | 0.1155 | 0.263 | 0.3758 | 0.7171 | 0.8782 | 0.0 | 0.71 | 0.891 | 0.251 | 0.8782 | | 11.3 | 4.0 | 400 | 8.9424 | 0.2968 | 0.4137 | 0.3193 | 0.0 | 0.2263 | 0.3046 | 0.3929 | 0.7687 | 0.9038 | 0.0 | 0.77 | 0.915 | 0.2968 | 0.9038 | | 10.3262 | 5.0 | 500 | 7.8881 | 0.2819 | 0.4434 | 0.3041 | 0.0 | 0.2255 | 0.2897 | 0.4223 | 0.7374 | 0.8839 | 0.0 | 0.57 | 0.904 | 0.2819 | 0.8839 | | 9.4336 | 6.0 | 600 | 7.9411 | 0.3048 | 0.4533 | 0.3209 | 0.0 | 0.2202 | 0.3159 | 0.4649 | 0.7934 | 0.9024 | 0.0 | 0.76 | 0.914 | 0.3048 | 0.9024 | | 8.996 | 7.0 | 700 | 7.2079 | 0.4942 | 0.6964 | 0.5359 | 0.0 | 0.2982 | 0.5086 | 0.5531 | 0.7995 | 0.9171 | 0.0 | 0.74 | 0.9305 | 0.4942 | 0.9171 | | 8.3482 | 8.0 | 800 | 6.5042 | 0.4987 | 0.6906 | 0.5471 | 0.0 | 0.2387 | 0.5154 | 0.5768 | 0.8095 | 0.9095 | 0.0 | 0.75 | 0.922 | 0.4987 | 0.9095 | | 7.9702 | 9.0 | 900 | 6.4708 | 0.5375 | 0.7037 | 0.6008 | 0.0 | 0.2762 | 0.5563 | 0.6024 | 0.8218 | 0.9209 | 0.0 | 0.78 | 0.9325 | 0.5375 | 0.9209 | | 7.7992 | 10.0 | 1000 | 6.3745 | 0.5317 | 0.7162 | 0.5988 | 0.0 | 0.2473 | 0.551 | 0.5953 | 0.8299 | 0.9223 | 0.0 | 0.76 | 0.935 | 0.5317 | 0.9223 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1