--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tinybert_base_train_book_ent_15p_s_init_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.725386493083808 --- # tinybert_base_train_book_ent_15p_s_init_mnli This model is a fine-tuned version of [gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init](https://huggingface.co/gokulsrinivasagan/tinybert_base_train_book_ent_15p_s_init) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Accuracy: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8785 | 1.0 | 1534 | 0.7729 | 0.6660 | | 0.7353 | 2.0 | 3068 | 0.7123 | 0.6915 | | 0.6658 | 3.0 | 4602 | 0.6983 | 0.7073 | | 0.6113 | 4.0 | 6136 | 0.7001 | 0.7169 | | 0.5654 | 5.0 | 7670 | 0.6811 | 0.7245 | | 0.5207 | 6.0 | 9204 | 0.7057 | 0.7257 | | 0.4798 | 7.0 | 10738 | 0.7188 | 0.7291 | | 0.4403 | 8.0 | 12272 | 0.7684 | 0.7231 | | 0.4036 | 9.0 | 13806 | 0.8034 | 0.7165 | | 0.3685 | 10.0 | 15340 | 0.8376 | 0.7220 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1