--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-512_A-8 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-512_A-8_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.8735127219476478 --- # bert_uncased_L-4_H-512_A-8_qnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.437 | 1.0 | 410 | 0.3448 | 0.8521 | | 0.3392 | 2.0 | 820 | 0.3215 | 0.8607 | | 0.2746 | 3.0 | 1230 | 0.3148 | 0.8735 | | 0.2175 | 4.0 | 1640 | 0.3549 | 0.8702 | | 0.1712 | 5.0 | 2050 | 0.4000 | 0.8580 | | 0.1311 | 6.0 | 2460 | 0.4335 | 0.8649 | | 0.1065 | 7.0 | 2870 | 0.4819 | 0.8642 | | 0.0849 | 8.0 | 3280 | 0.5127 | 0.8667 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3