--- library_name: transformers language: - en license: apache-2.0 base_model: gokulsrinivasagan/bert_base_train_book_ent_15p_s_init tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_train_book_ent_15p_s_init_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- # bert_base_train_book_ent_15p_s_init_rte This model is a fine-tuned version of [gokulsrinivasagan/bert_base_train_book_ent_15p_s_init](https://huggingface.co/gokulsrinivasagan/bert_base_train_book_ent_15p_s_init) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6919 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7023 | 1.0 | 10 | 0.6952 | 0.4729 | | 0.7018 | 2.0 | 20 | 0.6921 | 0.5271 | | 0.6966 | 3.0 | 30 | 0.6943 | 0.4729 | | 0.6977 | 4.0 | 40 | 0.6960 | 0.4729 | | 0.6969 | 5.0 | 50 | 0.6919 | 0.5271 | | 0.7016 | 6.0 | 60 | 0.6976 | 0.4729 | | 0.6981 | 7.0 | 70 | 0.6937 | 0.4729 | | 0.6952 | 8.0 | 80 | 0.6928 | 0.4729 | | 0.6986 | 9.0 | 90 | 0.6930 | 0.5271 | | 0.6978 | 10.0 | 100 | 0.6924 | 0.5271 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1